Две снегоуборочные машины могли бы выполнить работу за 3 часа. Сколько часов потребуется для выполнения этой работы каждой снегоуборочной машине в отдельности если одна из них может выполнить всю работу на 8 часов быстрее, чем другая?
Решение.
1) Весь объём работы = 1.
2) Пусть х - время работы одной из машин на выполнение всего объёма;
тогда (х-8) - время работы другой снегоуборочной машины, которая может выполнить тот же объём на 8 часов быстрее.
3) Часовая производительность:
первой машины = 1/х;
второй машины = 1/(х-8).
4) Работая вместе 3 часа, машины выполнят весь объём работы.
(1/х + 1/(х-8)) * 3 = 1 ,
[3*(х-8+х)]/[х*(х-8)] = 1,
6х - 24 = х² - 8х,
х² - 14х +24 = 0,
х₁,₂ = 7±√(49-24) = 7±5;
х₁ = 12
х₂ = 2 - данное значение отклоняем, т.к. в таком случае получилось бы, что вторая машина работает: 2-8=-6 часов.
5) х = 12 - следовательно, первой машине потребуется для выполнения всей работы 12 часов;
х-8 = 12-8 = 4 - следовательно, второй машине потребуется для выполнения всей работы 4 часа.
ПРОВЕРКА:
(1/12 + 1/4) * 3 = 1, или 100 % , что соответствует объёму всей работы.
ответ: первой машине для выполнения всей работы потребуется 12 часов, а второй машине 4 часа.
Введите задачу...
Алгебра Примеры
Популярные задачи Алгебра График y=3x
y
=
3
x
Воспользуемся уравнением для пучка прямых, проходящих через заданную точку для того, чтобы найти угловой коэффициент и точку пересечения с осью Y.
Нажмите, чтобы увидеть больше шагов...
Угловой коэффициент:
3
пересечение с осью Y:
0
Любую прямую можно построить при двух точек. Выберем два значения
x
и подставим их в уравнение, чтобы определить соответствующие значения
y
.
Нажмите, чтобы увидеть больше шагов...
x
y
0
0
1
3
Построим прямую с углового коэффициента и пересечения с осью Y или опираясь на две точки прямой.
Угловой коэффициент:
3
пересечение с осью Y:
0
x
y
0
0
1
3
12 часов и 4 часа
Объяснение:
Условие.
Две снегоуборочные машины могли бы выполнить работу за 3 часа. Сколько часов потребуется для выполнения этой работы каждой снегоуборочной машине в отдельности если одна из них может выполнить всю работу на 8 часов быстрее, чем другая?
Решение.
1) Весь объём работы = 1.
2) Пусть х - время работы одной из машин на выполнение всего объёма;
тогда (х-8) - время работы другой снегоуборочной машины, которая может выполнить тот же объём на 8 часов быстрее.
3) Часовая производительность:
первой машины = 1/х;
второй машины = 1/(х-8).
4) Работая вместе 3 часа, машины выполнят весь объём работы.
(1/х + 1/(х-8)) * 3 = 1 ,
[3*(х-8+х)]/[х*(х-8)] = 1,
6х - 24 = х² - 8х,
х² - 14х +24 = 0,
х₁,₂ = 7±√(49-24) = 7±5;
х₁ = 12
х₂ = 2 - данное значение отклоняем, т.к. в таком случае получилось бы, что вторая машина работает: 2-8=-6 часов.
5) х = 12 - следовательно, первой машине потребуется для выполнения всей работы 12 часов;
х-8 = 12-8 = 4 - следовательно, второй машине потребуется для выполнения всей работы 4 часа.
ПРОВЕРКА:
(1/12 + 1/4) * 3 = 1, или 100 % , что соответствует объёму всей работы.
ответ: первой машине для выполнения всей работы потребуется 12 часов, а второй машине 4 часа.