1. Выносим x за скобки, запишем ввиде степени: (x^2-x)(x+5)=(x+3)^2 * (x-2) Перемножим скобки и вынесем (x+3)^2 за скобки x^3+5x^2-x^2-5x = (x+3)^2 * x - (x+3)^2 * 2 Запишем выражение в развернутом ввиде при формулы сокращенного умножения (a+b)^2: x^3 + 5x^2 -x^2 -5x = ( x^2 +6x +9 )x - (x+3)^2 * 2 Выносим x за скобки: x^3 + 5x^2 -x^2 -5x = x^3 +6x^2 +9x - (x+3)^2 * 2 разложим по формуле сокращенного (a+b)^2, а так же сократим равные члены с разных сторон уравнения: 5x^2 - x^2 -5x = 6x^2 + 9x - ( x^2 +6x +9 ) * 2 Приводим подобные и вычисляем, знак каждого члена скобок меняем на противоположный, т.к. перед скобками стоит "-" : 4x^2 - 5x = 6x^2 + 9x + ( -x^2 -6x -9) * 2 Выносим 2 за скобки: 4x^2 -5x = 6x^2 +9x -2x^2 - 12x - 18 Вычисляем подобные члены: 4x^2 - 5x = 4x^2 -3x - 18 Сокращаем равные члены обеих частей уравнения: -5x = -3x - 18 Перемещаем иксы в левую часть и меняем знак: -5x +3x = -18 Приводим подобные и вычисляем: -2x = -18 Делим обе части на -2 и получаем ответ: x = 9
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов: 3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры: 4x2 + 15x2 = 19x2 5ab – 1,7ab = 3,3ab 13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов: 2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x 2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу: 2 * 3 = 3 + 3 = 2 + 2 + 2
(x^2-x)(x+5)=(x+3)^2 * (x-2)
Перемножим скобки и вынесем (x+3)^2 за скобки
x^3+5x^2-x^2-5x = (x+3)^2 * x - (x+3)^2 * 2
Запишем выражение в развернутом ввиде при формулы сокращенного умножения (a+b)^2:
x^3 + 5x^2 -x^2 -5x = ( x^2 +6x +9 )x - (x+3)^2 * 2
Выносим x за скобки:
x^3 + 5x^2 -x^2 -5x = x^3 +6x^2 +9x - (x+3)^2 * 2
разложим по формуле сокращенного (a+b)^2, а так же сократим равные члены с разных сторон уравнения:
5x^2 - x^2 -5x = 6x^2 + 9x - ( x^2 +6x +9 ) * 2
Приводим подобные и вычисляем, знак каждого члена скобок меняем на противоположный, т.к. перед скобками стоит "-" :
4x^2 - 5x = 6x^2 + 9x + ( -x^2 -6x -9) * 2
Выносим 2 за скобки:
4x^2 -5x = 6x^2 +9x -2x^2 - 12x - 18
Вычисляем подобные члены:
4x^2 - 5x = 4x^2 -3x - 18
Сокращаем равные члены обеих частей уравнения:
-5x = -3x - 18
Перемещаем иксы в левую часть и меняем знак:
-5x +3x = -18
Приводим подобные и вычисляем:
-2x = -18
Делим обе части на -2 и получаем ответ:
x = 9
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2