Объяснение:
Вариант 2.
1. Решите уравнение:
a 1) - ; 2) - = 0.
Запишите в стандартном виде число:
275000; 2) 0,0028 .
3. Представьте в виде степени с основанием b выражение:
1) ∙ ; 2) : ; 3) ∙ .
4. Упростите выражение 0,4 ∙ 1,6.
5. Найдите значение выражение:
1) + (; 2) .
6. Преобразуйте выражение ∙
так, чтобы оно не содержало степеней с отрицательными
показателями.
7. Вычислите:
1) ∙ ; 2) .
8. Решите графически уравнение = - x – 6 .
А-8 Контрольная работа №3 по теме
«Рациональные уравнения. Степень с целым отрицательным показателем. Функция y = и
15 см и 27 см
Пусть х - длина меньшей стороны прямоугольника, тогда (х+12) см - длина большей стороны.
Чтобы найти площадь прямоугольника, необходимо перемножить длины его сторон:
х · (х + 12) = 405.
Раскрываем скобки и находим х (длину меньшей стороны):
х² + 12х - 405 = 0 .
Согласно теореме Виета:
х₁,₂ = - 6 ± √(36 + 405) = - 6 ± √441 = - 6 ± 21.
х₁ = - 6 + 21 = 15 см
х₂ = - 6 - 21 = - 27 - не может быть решением, так как стороны прямоугольника могут быть только положительными числами.
Зная длину меньшей стороны, находим длину большей стороны:
х + 12 = 15 + 12 = 27 см.
Полученные значения являются правильными, так как их произведение равно 405, что соответствует условию задачи:
15 · 27 = 405
ответ: 15 см и 27 см
Объяснение:
Вариант 2.
1. Решите уравнение:
a 1) - ; 2) - = 0.
Запишите в стандартном виде число:
275000; 2) 0,0028 .
3. Представьте в виде степени с основанием b выражение:
1) ∙ ; 2) : ; 3) ∙ .
4. Упростите выражение 0,4 ∙ 1,6.
5. Найдите значение выражение:
1) + (; 2) .
6. Преобразуйте выражение ∙
так, чтобы оно не содержало степеней с отрицательными
показателями.
7. Вычислите:
1) ∙ ; 2) .
8. Решите графически уравнение = - x – 6 .
А-8 Контрольная работа №3 по теме
«Рациональные уравнения. Степень с целым отрицательным показателем. Функция y = и
15 см и 27 см
Объяснение:
Пусть х - длина меньшей стороны прямоугольника, тогда (х+12) см - длина большей стороны.
Чтобы найти площадь прямоугольника, необходимо перемножить длины его сторон:
х · (х + 12) = 405.
Раскрываем скобки и находим х (длину меньшей стороны):
х² + 12х - 405 = 0 .
Согласно теореме Виета:
х₁,₂ = - 6 ± √(36 + 405) = - 6 ± √441 = - 6 ± 21.
х₁ = - 6 + 21 = 15 см
х₂ = - 6 - 21 = - 27 - не может быть решением, так как стороны прямоугольника могут быть только положительными числами.
Зная длину меньшей стороны, находим длину большей стороны:
х + 12 = 15 + 12 = 27 см.
Полученные значения являются правильными, так как их произведение равно 405, что соответствует условию задачи:
15 · 27 = 405
ответ: 15 см и 27 см