1.Сократите дробь: а) (y^2-16)/(3у+12) ; б) (2а-4)/(3(а-2));
2)Выполните действия с дробями:
а) (5у-4)/6у + (у+2)/3у б) (b+2)/15b – (3c-5)/30c
в) 5/3x * 6у/15 г) 5m/6b : (35m^2)/48
д) (m/6b)2 е) (2х/b)3
3)Найдите значение корня:
а) √81 б) √0,25 в) √(2 7/9)
4)Упрости выражение:
а) (m^2-9)/(2m^2+1)* ((6m+1)/(m-3)+ (6m-1)/(m+3)) б) 1/(а-4b) - 1/(a+4b) - 2а/(〖16b〗^2-a^2 )
5)Найдите сторону и площадь ромба, если его диагонали равны 10 см и 24 см.
^- знак степени, /- дробная черта, ( )[ ]- скобки
В решении.
Объяснение:
Разложить квадратный трёхчлен на множители:
1) а² - 12а + 24 = 0
Приравнять к нулю и решить как квадратное уравнение.
D=b²-4ac =144 - 96 = 48 √D=48 = √16*3 = 4√3;
а₁=(-b-√D)/2a
а₁=(12-4√3)/2
а₁=6 - 2√3;
а₂=(-b+√D)/2a
а₂=(12+4√3)/2
а₂=6 + 2√3.
Разложение:
а² - 12а + 24 = (а - (6 - 2√3))(а - (6 + 2√3)) = (а - 6 + 2√3)*(а - 6 - 2√3).
2) -b² + 16b - 15 = 0
Приравнять к нулю и решить как квадратное уравнение.
-b² + 16b - 15 = 0/-1
b² - 16b + 15 = 0
D=b²-4ac =256 - 60 = 196 √D=14
b₁=(-b-√D)/2a
b₁=(16-14)/2
b₁=2/2
b₁=1;
b₂=(-b+√D)/2a
b₂=(16+14)/2
b₂=30/2
b₂=15.
Разложение:
-b² + 16b - 15 = -(b - 1)(b - 15).
3) -z² - 8z + 9 = 0
Приравнять к нулю и решить как квадратное уравнение.
-z² - 8z + 9 = 0/-1
z² + 8z - 9 = 0
D=b²-4ac =64 + 36 = 100 √D=10
z₁=(-b-√D)/2a
z₁=(-8-10)/2
z₁= -18/2
z₁= -9;
z₂=(-b+√D)/2a
z₂=(-8+10)/2
z₂=2/2
z₂=1.
Разложение:
-z² - 8z + 9 = -(z + 9)*(z - 1).
Пошаговое объяснение:
Первому маляру потребуется х час.
Второму маляру (х-5) час
За один час первый выполнит
1/х часть работы
второй
1/(х-5) часть работы
Первый проработал 3 часа и выполнил 3/х работы
второй проработал 2 часа и выполнил 2/(х-5) работы
Вместе они окрасили 40 % фасада
40 % = 40 :100=0,4
Составим уравнение , домножим на 5
Корень х₁ не подходит , поскольку в результате вычитания 5 часов получим отрицательное значение .
Значит х= 15 часов - время работы первого маляра
15- 5 = 10 часов время работы второго маляра
первый маляр может покрасит фасад за 15 часов , второй за 10 часов .