1) Составьте приведенное квадратное уравнение сумма корней которого равна - 20 а произведение корней числу 16
2) число 8 является корнем уравнения 6х^2+вх+8 =0. найти значение B.
3) найдите два последовательных натуральных числа Если сумма квадратов двух последовательных натуральных чисел равна 13
ах/3у
Объяснение:
(ах+ау)/ху² * (х²у)/(3х+3у)=
=[а(х+у)*х²у] / [ху²*3(х+у)]=
=сократить (разделить) (х+у) и (х+у) на (х+у), х² и х на х, у² и у на у=
=ах/3у;
3)(у²-6у+9)/(у²-9) : (10у-30)/(у²+3у)=
В числителе первой дроби развёрнут квадрат разности, свернуть. В знаменателе первой дроби разность квадратов, развернуть.
В числителе второй дроби вынести 10 за скобки, в знаменателе второй дроби вынести у за скобки.
=(у-3)²/(у-3)(у+3) : [10(у-3)]/[у(у+3)]=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой дроби умножить на числитель второй.
=[(у-3)(у-3)*у(у+3)] : [(у-3)(у+3)*10(у-3)]=
Все скобки сокращаются.
=у/10
Подставляем значение у:
=у/10=70/10=7
3sin^2(2x) + 10sin(2x) + 3 = 0.
Введем новую переменную, пусть sin(2x) = а.
Получается уравнение 3а^2 + 10а + 3 = 0.
Решаем квадратное уравнение с дискриминанта:
a = 3; b = 10; c = 3;
D = b^2 - 4ac; D = 10^2 - 4 * 3 * 3 = 100 - 36 = 64 (√D = 8);
x = (-b ± √D)/2a;
а1 = (-10 - 8)/(2 * 3) = -18/6 = -3.
а2 = (-10 + 8)/6 = -2/6 = -1/3.
Возвращаемся к замене sin(2x) = а.
1) sin(2x) = -3 (не может быть, синус любого угла больше -1, но меньше 1).
2) sin(2x) = -1/3.
Отсюда 2х = ((-1)^n * arcsin(-1/3))/2 + П/2 * n, n - целое число.
Делим все на 2: х = ((-1)^n * arcsin(-1/3))/2 + П/2 * n, n - целое число.