1. Составьте уравнение касательной к графику функции в точке с абсциссой х = - 2.
2. Найдите угловой коэффициент касательной к графику функции в точке с абсциссой .
3. На графике функции нейдите точку, в которой касательная к f(x) составляет с положительным направлением оси абсцисс угол, равный 45°.
1) 7х ² - 21 = 0 /( 7х ² / 7 - 21 / 7 = 0 / 7 )
х ² - 3 = 0
х ² = 3
х = √3
х = - √3
2) 5х ² + 9х = 0
d = b ² - 4ac = 9² - 4 * 5 * 0 = 81 - 0 = 81 ;
d > 0, то квадратное уравнение имеет 2 корня
х1 = - 9 - √81 / 2 * 5 = -18/10 = -1,8
х2 = -9 + √81 / 2 * 5 = 0/10 = 0
3) х² + х - 42 = 0
d = b² - 4ac = 1² - 4 * 1 * ( - 42 ) = 1 + 168 = 169
d > 0, то квадратное уравнение имеет 2 корня
x1 = - 1 - √169 / 2 * 1 = -14/2 = -7
x2 = -1 + √169 / 2 * 1 = 12/2 = 6
4) 3x² - 28x + 9 = 0
d = b² - 4ac = 28² - 4 * 3 * 9 = 784 - 108 = 676
d > 0, то квадратное уравнение имеет 2 корня
x1 = - 28 - √676 / 2 * 3 = -54/6 = -9
x2 = - 28 + √676 / 2 * 3 = - 28 + 26 / 6 = - 2/6 =
- 1/3
5) 2x² - 8x + 11 = 0
d = b² - 4ac = (-8)² - 4 * 2 * 11 = 64 - 88 = -24
d < 0 , то уравнение не имеет корней.
6) 16х² - 8х + 1 = 0
d = b² - 4ac = (-8)² - 4 * 16 * 1 = 64 - 64 = 0
d = 0 , то квадратное уравнение имеет один корень
х = 8 / 2 * 16 = 0,25
х² + х -30 ≤ 0
х² -х -20 ≥ 0
ищем корни квадратных трёхчленов:
х² + х -30 = 0 корни -6 и 5
х² -х -20 = 0 корни 5 и -4
-∞ [-6] [-4] [5] +∞
+ - - + знаки х² + х -30
+ + - + знаки х² -х -20
решение системы
ответ: х∈[-6; -4]