В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ivoleg13
ivoleg13
07.09.2020 04:47 •  Алгебра

1)sqrt2cosx-1=0 2)3tg2x+sqrt3=0 3)найти решение уравнения sin x/3=-1/2 на отрезке [0: 3pi]

Показать ответ
Ответ:
kraken45
kraken45
12.06.2020 08:07

1) sqrt(2)cosx-1=0
cosx=1/sqrt(2) избавляемся от иррациональности
cosx=sqrt(2)/2

x=pi/4+2pi*n, n принадлежит Z

2)3tg2x+sqrt(3)=0

 

 tg2x=-sqrt(3)/3

2x= - arctg( sqrt(3)/3 ) + pi*n, n принадлежит Z

2x= -pi/6 + pi*n, n принадлежит Z

x=-pi/12+(pi*n)/2,  n принадлежит Z

3)sin x/3=-1/2
 a) x/3=arcsin( -1/2)= -pi/6 +2pi*n и x/3=pi- arcsin( -1/2) =pi+pi/6=(7*pi)/6 +2pi*n, n пренадлежит Z
x=-pi/2+6pi*n и x=(7*pi)/2 +6pi*n, n  пренадлежит Z 

б)  x=-pi/2+6pi*n
нет таких n, при которых  x=-pi/2+6pi*n принадлежит промежутку
в)  x=(7*pi)/2 +6pi*n

n=0 x= x=(7*pi)/2 , удв промежутку

 

 ОТВЕТ: 1) x=-pi/2+6pi*n , n  пренадлежит Z  2) x=(7*pi)/2 +6pi*n, n  пренадлежит Z 
3)  (7*pi)/2

 

 

 

 

 

 

 

 

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота