В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Evelina300606
Evelina300606
26.02.2021 00:44 •  Алгебра

1. Теңдеудің графигін салыңдар: а) х2 + y = 5;
б) 2y + 3x = 1;
ә) xy = 15;
в) x2+y2 = 25.​

Показать ответ
Ответ:
султа65
султа65
11.07.2021 03:34
6sin²x - 3sinxcosx - cos²x = 1.
Избавимся от единицы, использовав основное тригонометрическое тождество.
sin²x + cos²x + 5sin²x - 3sinxcosx - 2cos²x = 1
5sin²x - 3sinxcosx - 2cos²x = 0
Перед нами однородное уравнение.
Однородные тригонометрические уравнения решаются делением на какую-то величину.
Разделим на cos²x ( cosx ≠ 0).
5tg²x - 3tgx - 2 = 0
Пусть t = tgx.
5t² - 3t - 2 = 0
D = 9 + 4•2•5 = 49 = 7²
t1 = (3 + 7)/10 = 1
t2 = (3 - 7)/10 = -4/10 = -2/5
Обратная замена:
tgx = 1
x = π/4 + πn, n ∈ Z
tgx = -2/5
x = arctg(-2/5) + πn, n ∈ Z.
0,0(0 оценок)
Ответ:
Beckonechnost
Beckonechnost
28.01.2022 13:54
Рассмотрим функцию
    f(x,y,z)=x^2+y^2-xz-yz
Наша функция задана в неявном виде, то частные производные функции вычисляются по формулам:
\dfrac{\partial z}{\partial x} = -\dfrac{ \frac{\partial f}{\partial x} }{ \frac{\partial f}{\partial z} } =- \dfrac{2x-z}{-x-y}

\dfrac{\partial z}{\partial y} = -\dfrac{ \frac{\partial f}{\partial y} }{ \frac{\partial f}{\partial z} } =- \dfrac{2y-z}{-x-y}
Вычислим значение частных производных в точке M_0 с координатами (x_0;y_0;z_0).
f'_x(x_0;y_0;z_0)= \dfrac{2x_0-z_0}{x_0+y_0} \\ \\ f'_y(x_0;y_0;z_0)= \dfrac{2y_0-z_0}{x_0+y_0}
Запишем уравнение касательной плоскости к поверхности в точке M_0:
z-z_0=f'_x(x_0;y_0;z_0)(x-x_0)+f'_y(x_0;y_0;z_0)(y-y_0) - уравнение касательной в общем виде.

\boxed{z-z_0= \dfrac{2x_0-z_0}{x_0+y_0} \cdot (x-x_0)+ \dfrac{2y_0-z_0}{x_0+y_0} \cdot(y-y_0)} - уравнение касательной плоскости к поверхности в точке M_0 с координатами (x_0;y_0;z_0).

Уравнение нормали в общем виде:
      \dfrac{x-x_0}{f'_x(x_0;y_0;z_0)} = \dfrac{y-y_0}{f'_y(x_0;y_0;z_0)} = \dfrac{z-z_0}{-1}
Пользуясь этой формулой, имеем каноническое уравнение нормали к поверхности в точке M_0:

\boxed{\dfrac{(x-x_0)(x_0+y_0)}{2x_0-z_0} = \dfrac{(y-y_0)(x_0+y_0)}{2y_0-z_0} = \dfrac{z-z_0}{-1}} - каноническое уравнение нормали к поверхности в точке M_0 с координатами (x_0;y_0;z_0).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота