1. Теңсіздікті шешіңдер.
х2+4х+10 ≥ 0;
-х2+10х-25 ≤ 0;
х2+3х+2 ≤ 0;
-х2+4 < 0;
Жауаптарыңды төмендегі берілген аралықтармен сәйкестендіріңдер.
Теңсіздіктің шешімі жоқ .
ә) Теңсіздіктің шешімі барлық сан түзуі .
б) Теңсіздіктің шешімі бір ғана нүкте.
в) Теңсіздіктің шешімі кесінді болады.
г) Теңсіздіктің шешімі ашық аралық болады .
д) Теңсіздіктің шешімі екі сан аралықтарының бірігуі болады. [8]
2. (х-а)(2х-1)(х+b) > 0 теңсіздігінің шешімі (-4; ½)∪(5;∞) болады. a мен b-ның мәнін табыңдар.
[2]
3. Теңсіздіктер жүйесін шешіңдер:
5х2-9х+4 < 0,
2х+3 ≥ 0 [5]
Сумма минус трех целых пяти десятых и четырех целых пяти десятых равна одной целой. Что бы это решить мне потребовалось сделать следующее -
Найти модули слагаемых. Затем из большего модуля вычитаем меньший, если больший модуль был отрицательным числом (модули - это всегда положительные числа. Здесь имелось ввиду число до превращения в модуль), то разность модулей будет отрицательной. А если больший модуль остался числом положительным, то разность будет положительная. В нашем случае мы пользуемся последним и поэтому ответ будет одна целая(четыре целых пять десятых минус три целых пять десятых равняется одной целой).
Ну надеюсь более-менее понятно. Мда...
Сумма минус трех целых пяти десятых и четырех целых пяти десятых равна одной целой. Что бы это решить мне потребовалось сделать следующее -
Найти модули слагаемых. Затем из большего модуля вычитаем меньший, если больший модуль был отрицательным числом (модули - это всегда положительные числа. Здесь имелось ввиду число до превращения в модуль), то разность модулей будет отрицательной. А если больший модуль остался числом положительным, то разность будет положительная. В нашем случае мы пользуемся последним и поэтому ответ будет одна целая(четыре целых пять десятых минус три целых пять десятых равняется одной целой).
Ну надеюсь более-менее понятно. Мда...