1) Телевизионный завод производит телевизоры, среди которых в среднем 30% оказываются качественными. Сколько телевизоров надо перебрать, чтобы с вероятностью 0.99 среди них можно было выбрать 40 качественных? 2) Случайное событие произошло 320 раз при 400 испытаниях. Найти интервал, в котором с вероятностью 0.9 лежит вероятность этого события.
x^2+6x+9<0,
(x+3)^2<0,
нет решений; (x+3)^2≥0, x∈R
-x^2+6x-5≥0,
a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,
-x^2+6x-5=0,
x^2-6x+5=0,
по теореме Виета х_1=1, x_2=5,
1≤x≤5,
x∈[1;5]
x^2-4x+3≥0,
a=1>0 - ветви параболы направлены вверх,
x^2-4x+3=0,
x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,
x≤1, x≥3,
x∈(-∞;1]U[3;+∞)
x^2-6x+8≤0,
a=1>0 - ветви параболы - вверх,
x^2-6x+8=0,
x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,
2≤x≤4,
x∈[2;4]
х=-4/-2=2
у=-4+8-3=1
найдём нули функции
-x^2+4x-3=0
x^2-4x+3=0
х1=3 х2=1
Построим параболу
вершина параболы (2;1) и две точки пересечения с осью ОХ
(3;0) (1;0) Ветви параболы направлены вниз
Чтобы найти промежутки знакопостоянства функции по ее графику,
нужно найти промежутки значений аргумента х, при которых график функции расположен выше оси ОХ – при этих значениях аргумента х функция больше 0.
найти промежутки значений аргумента х, при которых график функции расположен ниже оси ОХ –
при этих значениях аргумента х функция меньше 0.
На промежутке (1;3) график расположен выше оси ОХ и функция принимает положительные значения.
На промежутках (от минус бесконечности до1) и
(от 3 до плюс бесконечности) функция расположена ниже оси ОХ и функция принимает отрицательные значения.