1)Точка С середина отрезка АВ. Известно, что В(-3;7) и С(1;4)
Найти координаты точки А.
2)Найти периметр треугольника АВС, если А(1;2), В(4;6), С(1;3).
3)Постройте окружности (х-2)2+(у-3)2=16 и (х+1)2+(у+2)2=25
Выясните их взаимное расположение.
4)Докажите, что четырехугольник с вершинами А(-3;-2), B (3;0), С(1;6), D (-5;4) является является параллелограммом.
5)Дан треугольник АВС, где А(2;3), В(2;3), С(8;11).
Найти длину медианы ВД треугольника АВС
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
ответ 8 см, 8√3см
a) D(y) = [0; 1.25]
б) D(y) = (-∞; -10] U [8; 12) U (12; +∞).
Объяснение:
а) у = √(5х - 4х²)
Подкоренное выражение не должно быть отрицательным, поэтому
5х - 4х² ≥ 0
Найдём корни уравнения 5х - 4х² = 0
х(5 - 4х) = 0
х1 = 0; х2 = 1,25
Делим на интервалы и определяем знаки на интервалах. Получаем следующую картинку
- + -
0 1,25
Очевидно, что 5х - 4х² ≥ 0 при х∈[0; 1.25], поэтому область определения функции D(y) = [0; 1.25].
б) y = (√(x² + 2x - 80))/(3х - 36)
Знаменатель функции не должен быть равен нулю, поэтому
3х - 36 ≠ 0 ⇒ х ≠ 12
Подкоренное выражение не должно быть отрицательным, поэтому
x² + 2x - 80 ≥ 0
Найдём корни уравнения x² + 2x - 80 = 0
D = 4 + 320 = 324
х1 = 0,5(-2 - 18) = -10
х2 = 0,5(-2 + 18) = 8
Делим на интервалы и определяем знаки на интервалах. Получаем следующую картинку
+ - + +
-10 8 12
Очевидно, что x² + 2x - 80 ≥ 0 при х∈(-∞; -10] U [8; 12) U (12; +∞), поэтому область определения функции D(y) = (-∞; -10] U [8; 12) U (12; +∞).