1. Точки М и К являются соответрственно серединами сторон АВ и ВС треугольника АВС, где сторона АС равна 22 см. Найдите МК и площадь треугольника АВС, если площадь треугольника МВК равна 25 см2 .
Х - количество станков 1-го типа у - количество станков 2-го типа По условию х - у > 5 Имеем систему двух неравенств {13x + 12y ≤ 305 {15x +24y > 438 Решаем методом сложения Первое неравенство умножим на 2, а второе умножим на (-1), {13х*2 + 12у*2 ≤ 305*2 {15х*(-1) + 24у*(-1) < 438*(-1) Сложим эти неравенства 26х + 24у - 15х - 24у ≤ 610 - 438 11х ≤ 172 х ≤ 172 : 11 х ≤ 15,6 Ближайшее целое х= 15 - количество станков 1-го типа По условию х > y более, чем на 5, т.е минимум на 6 и более, поэтому проверим у=15-6=9 у=9 - количество станков 2-го типа Проверка значений х=15; у= 9 {13 * 15 + 12 * 9 ≤ 305 {15*15 + 24*9 > 438 Считаем {195 + 108 ≤ 305 => 303 ≤ 305 - верное неравенство {225 + 216 > 438 => 441 > 438 - верное неравенство
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
у - количество станков 2-го типа
По условию
х - у > 5
Имеем систему двух неравенств
{13x + 12y ≤ 305
{15x +24y > 438
Решаем методом сложения
Первое неравенство умножим на 2, а второе умножим на (-1),
{13х*2 + 12у*2 ≤ 305*2
{15х*(-1) + 24у*(-1) < 438*(-1)
Сложим эти неравенства
26х + 24у - 15х - 24у ≤ 610 - 438
11х ≤ 172
х ≤ 172 : 11
х ≤ 15,6
Ближайшее целое х= 15 - количество станков 1-го типа
По условию х > y более, чем на 5, т.е минимум на 6 и более, поэтому проверим у=15-6=9
у=9 - количество станков 2-го типа
Проверка значений х=15; у= 9
{13 * 15 + 12 * 9 ≤ 305
{15*15 + 24*9 > 438
Считаем
{195 + 108 ≤ 305 => 303 ≤ 305 - верное неравенство
{225 + 216 > 438 => 441 > 438 - верное неравенство
ответ; 15 станков 1-го типа;
9 станков 2-го типа
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.