1. Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ. а) 2x2 + 8х + 20 > 0;
b) -х? – 10x + 25 > 0;
c)х2 + 3x +250;
d) —4х2 – 4 > 0.
1) Неравенство не имеет решений.
2) Решением неравенства является вся числовая прямая.
3) Решением неравенства является одна точка.
4) Решением неравенства является закрытый промежуток.
5) Решением неравенства является открытый промежуток.
6) Решением неравенства является объединение двух промежутков.
На [-π/4;0] таких точек нет, функция определена во всех точках указанного отрезка.
Находим y`:
y`=(7/cos²x)-7.
Находим точки возможных экстремумов: точки, в которых производная обращается в 0 или не существует.
y` не существует в точках (π/2)+πk, k∈ Z.
y`=0
(7/cos²x)-7=0;
(7-7cos²x)/cos²x=0;
7-7cos²x=0
7(1-cos²x)=0
7sin²x=0
sinx=0
x=πn, n∈ Z.
Указанному отрезку принадлежит одна точка х=0, но она является крайней правой точкой.
На [-π/4;0] y`=7sin²x/cos²x=7tg²x>0 ⇒ функция возрастает на указанном отрезке и наибольшее значение принимает в крайней правой точке,
т. е. при х=0.
у(0)=7·tg(0) - 7·0+5=5.
О т в е т.у= 5 - наибольшее значение функции на [-π/4;0]
тогда второй выполняет заказ за х+4 часов
221/х столько деталей в час делает первый рабочий
221/(x+4) столько деталей делает в час второй рабочий
221/x=4 + 221/(x+4)
221/x=(221+4x+16)/(x+4)
221/x=(237+4x)/(x+4) это пропорция. произведения крайних членов пропорции равны
221(х+4)=(237+4х)х
221х+221*4=237х+4х²
4х²+16х-221*4=0 разделим все на 4
x²+4x-221=0
x1-2=(-4+-√(16+884))/2=(-4+-√900)/2=(-4+-30)/2
x=(-4+30)/2=26/2=13 второй корень не берем т.к. он <0
второй рабочий делает за час 221/(x+4)=221/(13+4)=221/17=13 деталей