№1 Упростите выражение х^2/y-1 : x^3/2y-2 и найдите его значение при x=0,15 y= -3 * 15 №2 Одиннадцать одинаковых рубашек дешевле куртки на 1%. На сколько процентов 28 таких же рубашек дороже куртки?
Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически.
х² = 6 - х
х² + х - 6 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении.
Для построения прямой достаточно двух точек: х = 0, у = 6,
х = 3, у = -3+6 = 3
"Дана функция y=x2−4. Построй график функции y=x2−4.
a) Координаты вершины параболы: ( ; )
(в пунктах б), в) и г) вместо −∞, пиши «−Б»; вместо +∞, пиши «+Б»).
б) При каких значениях аргумента значения функции отрицательны?
( ; ). в) При каких значениях аргумента функция возрастает? [ ; ).
г) При каких значениях аргумента функция убывает? ( ; ]
(Сравни свой график с представленным в шагах решения).
Объяснение:
a) Координаты вершины параболы: х₀=0/2=0 , у₀=0-4=-4 ; (0 ;-4 ) .
б) у<0 при х²-4<0
-------(+)------(-2)--------(-)--------(2)------(+) ,при х∈ (-2;2)
в) Функция возрастает при х≥0.
г) Функция убывает при х≤0.