1) В каких случаях общий знаменатель двух рациональных дробей равен: произведению знаменателей этих дробей; Одному из знаменателей? 2) При каких значениях букв выполняются действия сложения и вычитания рациональных дробей?
Докажите признак параллелограмма по двум противоположным сторонам, которые равны и параллельны.
Доказательство
Дано: четырёхугольник АВСD; сторона ВС равна и параллельна стороне АD.
Доказать, что АВСD - параллелограмм.
Для доказательства проведем диагональ AC, в результате чего четырёхугольник АВСD разобьется на два треугольника - Δ ABC и ΔACD.
Сторона ВС треугольника АВС равна стороне АD треугольника AСD - согласно условию.
Сторона АС треугольника АВС равна стороне АС треугольника ACD - согласно построению: проведённая диагональ является общей стороной данных треугольников.
∠ВСА треугольника АВС равен ∠САD треугольника ACD - как углы внутренние накрест лежащие при параллельных прямых ВС║AD и секущей АС.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (первый признак равенства треугольников).
Из равенства треугольников ABC и АCD следует, что сторона АВ = CD.
АВ также параллельна СD, так как ∠ВАС треугольника АВС равен ∠АСD треугольника ACD; а так как эти углы являются внутренними накрест лежащими при прямых АВ и СD и секущей АС, то это означает, что АВ ║СD.
Таким образом, в четырёхугольнике АВСD обе пары противоположных сторон равны и параллельны друг другу, следовательно, четырёхугольник АВСD является параллелограммом.
Таким образом, мы доказали, что: если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник – параллелограмм (второй признак параллелограмма).
The given equation can be re-written as sin
2
4x−2sin4xcos
4
x+cos
2
x=0
Add and subtract cos
8
x
∴(sin4x−cos
4
x)
2
+cos
2
x(1−cos
6
x)=0
Since both the terms are +ive (cos
6
x≤1), above is possible only when each term is zero for the same value of x.
sin4x−cos
4
x=0 .(1)
and cos
2
x(1−cos
6
x)=0 .(2)
From (2) cosx=0 or cos
2
x=1
∵z
3
=1⇒z=1 only
as other values will not be real.
Case I: If cosx=0 i.e., x=(n+
2
1
)π, then from (1)
sin4(n+
2
1
)π+0=0
or sin(4n+2)π=0 which is true.
∴x=(n+
2
1
)π (3)
Case II: When cos
2
x=1 i.e., sinx=0
∴x=rπ then from (1), sin4rπ−1=0 or −1=0 which is not true. Hence the only solution is given by (3).
См. Объяснение
Объяснение:
Задание
Докажите признак параллелограмма по двум противоположным сторонам, которые равны и параллельны.
Доказательство
Дано: четырёхугольник АВСD; сторона ВС равна и параллельна стороне АD.
Доказать, что АВСD - параллелограмм.
Для доказательства проведем диагональ AC, в результате чего четырёхугольник АВСD разобьется на два треугольника - Δ ABC и ΔACD.
Сторона ВС треугольника АВС равна стороне АD треугольника AСD - согласно условию.
Сторона АС треугольника АВС равна стороне АС треугольника ACD - согласно построению: проведённая диагональ является общей стороной данных треугольников.
∠ВСА треугольника АВС равен ∠САD треугольника ACD - как углы внутренние накрест лежащие при параллельных прямых ВС║AD и секущей АС.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (первый признак равенства треугольников).
Из равенства треугольников ABC и АCD следует, что сторона АВ = CD.
АВ также параллельна СD, так как ∠ВАС треугольника АВС равен ∠АСD треугольника ACD; а так как эти углы являются внутренними накрест лежащими при прямых АВ и СD и секущей АС, то это означает, что АВ ║СD.
Таким образом, в четырёхугольнике АВСD обе пары противоположных сторон равны и параллельны друг другу, следовательно, четырёхугольник АВСD является параллелограммом.
Таким образом, мы доказали, что: если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник – параллелограмм (второй признак параллелограмма).