Предположим, что оно существует! Пусть это будет а/с несократимая дробь. Значит (а/с)² = 7 (а²) /(с²) =7 а² = с² * 7. В правой части выражение кратно 7, значит и в левой кратно 7. А это означает, что а кратно 7, т.е. а = 7к. (7к)² с² * 7 49 к² = 7 с². Сократи на 7. 7 к² = с². Теперь в левой части число кратно 7, а значит и в правой тоже кратно 7. Значит с= 7п. Получается, что дробь а/с будет сократимой, что противоречит нашему предположению о том, что она несократимая.. Значит такой дроби не существует.
Нам нужно доказать, что √17 является иррациональным числом. Пусть оно является рациональным числом. Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая. Возведя в квадрат, получаем, что 17 = m²/n² Тогда 17n² = m² Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число. Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.
Значит (а/с)² = 7
(а²) /(с²) =7
а² = с² * 7. В правой части выражение кратно 7, значит и в левой кратно 7. А это означает, что а кратно 7, т.е. а = 7к.
(7к)² с² * 7
49 к² = 7 с². Сократи на 7.
7 к² = с². Теперь в левой части число кратно 7, а значит и в правой тоже кратно 7. Значит с= 7п. Получается, что дробь а/с будет сократимой, что противоречит нашему предположению о том, что она несократимая.. Значит такой дроби не существует.
Пусть оно является рациональным числом.
Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая.
Возведя в квадрат, получаем, что 17 = m²/n²
Тогда 17n² = m²
Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число.
Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.