1. В треугольнике АВС известно, что АС = √2 см, ВС = 1 см, ∠А=30°. Найдите угол В. 2. Длина дуги окружности равна 12 см, а ее градусная мера – 27°. Найдите радиус окружности.
3. Какие координаты имеет середина отрезка АВ, если А(-6; 7) и В(4; -9)?
4. Даны векторы а ⃗(-2;4)и в ⃗(3; -1). Координаты вектора 3а ⃗-2в ⃗ равны:
5. Составьте уравнение прямой, проходящей через точку А(-1; 9) и параллельной прямой у = 9х – 16.
Пусть х мест было в каждом ряду, тогда рядов было 320/х . После увеличения зрительного зала мест стало (х+4) , а рядов 320 / х + 1 . Составляем уравнение по условию задачи:
(х+4) * ( 320/х + 1) = 420
(х+4) *(320+х) / х = 420
приводим к общему знаменателю и отбрасываем его заметив, что х≠0
(х+4)(320+х) = 420х
320х+х2+1280+4х-420х=0
х2 -96 х +1280 = 0
Д= 9216 - 4*1280 = 9216 -5120=4096
х(1)=(96+64) / 2 =80 (нереально для кинотеатра, так как в каждом ряду по 4 места)
х(2) =(96-64) / 2 =16
320:16 + 1 = 21 ряд стал в новом зрит зале.
Формула объема призмы: Площадь основания (Sосн.) умножить на высоту (h), тобишь:
Vпризмы=Sосн.*h
Площадь основания правильного шестиугольника равна: три корня из трех на два умножить на сторону в квадрате(a), тобишь:
Sосн.=3√3/2*a^2
Из текста задачи ясно, что объем не изменился. Получаем: V1=V2, а сторона основания второй призмы в два раза меньше, и обозначив сторону первой за a, сторону второй обозначим через a/2.
Приравниванием формулы объема первой и второй призмы,обозначаем искомую высоту через x и получаем уравнение:
3√3/2*a^2*24=3√3/2*a^2/4*x
Делим обе части уравнения на 3√3/2 и получаем:
a^2*24=a^2/4*x
Чтобы избавится от знаменателя во второй части домнажаем обе части на 4:
96*a^2=a^2x
x=96a^2/a^2
В результате a^2 сокращается и остается 96:
x=96.
ответ:96 см.