1 ВАРИАНТ 1. Докажите, что параллелограмм АВСД и параллелограмм ABMK , изображенные на рисунке, равновеликие и равносоставленные, если ДС ПАВ || KM D с K M A В
Площадь фигуры может быть вычислена через определённый интеграл.
График функции y=3x² - 2 - квадратная парабола веточками вверх. Вершина параболы находится в точке А(0; -2). Парабола пересекает ось х в двух точках:
х₁ = -√2/3 ≈ -0,816
х₂ = √2/3 ≈ 0,816
Найдём пределы интегрирования
При х = 1 y=3x² - 2 = 1
Эта точка находится правее нуля функции в точке х₂ ≈ 0,816, т.е. в области положительных у, поэтому нижний предел х = 1, ну, а верхний предел, естественно, х = 2.
1. Выпишем числа из знаменателей исходных дробей и разложим каждое из них на простые множители.
60 = 2 * 2 * 3 * 5
540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5
Вычеркиваем все множители для 540 и 20, которые есть в разложении 60. Выделим их жирным:
540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5
2. Выписываем все множители, входящие в первое число (60):
2 * 2 * 3 * 5
3. Домножаем на недостающие множители из разложений остальных чисел (это числа, которые не выделены жирным):
2 * 2 * 3 * 5 * 3 * 3 = 540
Таким образом, наименьший общий знаменатель = 540. Приведем наши дроби к наименьшему общему знаменателю:
Площадь фигуры может быть вычислена через определённый интеграл.
График функции y=3x² - 2 - квадратная парабола веточками вверх. Вершина параболы находится в точке А(0; -2). Парабола пересекает ось х в двух точках:
х₁ = -√2/3 ≈ -0,816
х₂ = √2/3 ≈ 0,816
Найдём пределы интегрирования
При х = 1 y=3x² - 2 = 1
Эта точка находится правее нуля функции в точке х₂ ≈ 0,816, т.е. в области положительных у, поэтому нижний предел х = 1, ну, а верхний предел, естественно, х = 2.
Интегрируем: ∫(3x² - 2)dx = x³ - 2x.
Подставляем пределы:
S = (2³ - 2·2) - (1³ - 2·1) = 4+1 = 5
ответ: Площадь фигуры равна 5