1 вариант 1) Функция задана формулой =3x-15. Определите:
а) значение функции соответствующее значению аргумента равному 2.5
б) значение аргумента, при котором значение функции равно 6;
В) проходит ли график функции через точку А (-3;24).
2) Постройте график функции y=1,5х+3. Укажите с графика
а) чему равно значение у, при x=-2.
б) чему равно значение х, при котором у=6.
3) В одной и той же системе координат постройте графики функций:
а) y=3x; б) y=3; в) y=x+3.
4) Найдите координаты точек пересечения графиков функций у=-40x+3 и y=-24х+1.
Итак, прямоугольник. Площадь его равна произведению ширины на длину. Пусть длина будет Х см. Тогда ширина Х-6см, т.к. по условию задачи, ширина на 6 см меньше длины. Значит площадь прямоугольника равна Х * (Х-6) см в квадрате. По учловию площадь равна 40.
Значит, Х* (Х-6) = 40.
Решаем уравнение:
1) Раскрываем скобки ( я буду писать х в квадрате как х2):
х2 - 6х =40.
Переносим 40: х2 - 6х -40 =0.
Получилось простое квадратное уравнение.
По формуле дискриминанта (Д): Д = (б2 - 4ас). В роли б у нас выступает 6 (т.е. 2 член уравнения, который умножается на х), в роли а - первый член, который умножается на х2, в нашем случае это 1, в роли с - третий член, который обычно в виде простого числа, т.е. -40.
Итак, д=(-6)*(-6) - 4* 1 *(- 40) = 36 + 160 = 196
Далее, по формулам, находим корни уравнения:
х = (- б + корень из д)/2а = 6 + 14 / 2 = 20/2 = 10
или х = ( - б - корень из д) / 2а = (6 - 14) / 2 = - 8/2 = -4.
У нас два корня. Но так как мы за букву х брали длину прямоугольника, то она не можнт быть отрицательной. Значит, подходит только первый вариант.
Итак, длина прямоугольника = 10, следовательно ширина равна 10 - 6 = 4.
Итак, прямоугольник. Площадь его равна произведению ширины на длину. Пусть длина будет Х см. Тогда ширина Х-6см, т.к. по условию задачи, ширина на 6 см меньше длины. Значит площадь прямоугольника равна Х * (Х-6) см в квадрате. По учловию площадь равна 40.
Значит, Х* (Х-6) = 40.
Решаем уравнение:
1) Раскрываем скобки ( я буду писать х в квадрате как х2):
х2 - 6х =40.
Переносим 40: х2 - 6х -40 =0.
Получилось простое квадратное уравнение.
По формуле дискриминанта (Д): Д = (б2 - 4ас). В роли б у нас выступает 6 (т.е. 2 член уравнения, который умножается на х), в роли а - первый член, который умножается на х2, в нашем случае это 1, в роли с - третий член, который обычно в виде простого числа, т.е. -40.
Итак, д=(-6)*(-6) - 4* 1 *(- 40) = 36 + 160 = 196
Далее, по формулам, находим корни уравнения:
х = (- б + корень из д)/2а = 6 + 14 / 2 = 20/2 = 10
или х = ( - б - корень из д) / 2а = (6 - 14) / 2 = - 8/2 = -4.
У нас два корня. Но так как мы за букву х брали длину прямоугольника, то она не можнт быть отрицательной. Значит, подходит только первый вариант.
Итак, длина прямоугольника = 10, следовательно ширина равна 10 - 6 = 4.