Решение задачи можно уложить в 3-4 строки, но это слишком просто и быстро. Поэтому ... Диагональ и две стороны прямоугольника образуют прямоугольный треугольник. А раз есть прямоугольный треугольник, и надо разобраться со сторонами, то теорема Пифагора в этом деле - первый Пусть х см - одна сторона прямоугольника, тогда другая сторона будет равной (14-2х)/2=7-х см. Две стороны прямоугольника - катеты, а диагональ играет роль гипотенузы. Уравнение примет такой вид: . |:2
Можно найти корни по теореме Виета (или по теореме, обратно теореме Виета). Сумма корней равна 7, произведение равно 12. Подходящая пара чисел 3 и 4. Если одна сторона прямоугольника 3 см, то другая 7-3=4см. Если одна сторона прямоугольника 4 см, то другая 7-4=3 см. Получились два равнозначных ответа. ответ: стороны прямоугольника 3 см и 4 см.
Диагональ и две стороны прямоугольника образуют прямоугольный треугольник. А раз есть прямоугольный треугольник, и надо разобраться со сторонами, то теорема Пифагора в этом деле - первый
Пусть х см - одна сторона прямоугольника, тогда другая сторона будет равной (14-2х)/2=7-х см.
Две стороны прямоугольника - катеты, а диагональ играет роль гипотенузы. Уравнение примет такой вид: .
|:2
Можно найти корни по теореме Виета (или по теореме, обратно теореме Виета). Сумма корней равна 7, произведение равно 12. Подходящая пара чисел 3 и 4.
Если одна сторона прямоугольника 3 см, то другая 7-3=4см. Если одна сторона прямоугольника 4 см, то другая 7-4=3 см. Получились два равнозначных ответа.
ответ: стороны прямоугольника 3 см и 4 см.
Задача.
Найдите наименьшее значение функции f(x)= x3 - 3x2- 9x + 31 на отрезке [-1; 4].
Напомним, что любая функция принимает наименьшее или наибольшее значение тогда, когда ее производная равна нулю или не существует.
Найдем производную y´(x) и приравняем ее к нулю.
y´(x)=(x3-3x2-9x+31 )´= 3x2 - 6x - 9 - существует при любых x.
3x2 - 6x - 9=0
Сократим на 3: x2 - 2x - 3=0
D= b2-4ac, D = (-2)2 - 4*1*(-3) = 4 + 12 =16
x1,2= (-b±√D) / 2a,
x1,2= (-(-2) ±√16) / 2*1 = (2±4) / 2 = 3, -1.
x1= -1, x2= 3 - в этих точках функция y(x) принимает наименьшее или наибольшее значение.
Когда производная меньше нуля, функция убывает.
Когда производная больше нуля, функция возрастает.
Посмотрим на знаки производной.
При x<-1 y´(x)>0, функция y(x) возрастает
При -1 <x< 3 y´(x)<0, функция y(x) убывает
При х>3 y´(x)>0, функция y(x) возрастает
На отрезке [-1; 4] функция убывает до точки х=3 и возрастает после нее, значит наименьшее значение в точке 3.
Подставим х=3 в функцию, получаем: y(3) = 33- 3*32- 9*3+ 31= 27-27-27+31= 4, это и будет ответ.
ответ: 4