1)Вероятность того, что у карандаша в упаковке сломан грифель, равна 0,29. Школьник в магазине выбирает один такой карандаш. Найдите вероятность того, что этот карандаш с целым грифелем.
2)Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении ,4:3, считая от вершины острого угла. Найдите меньшую сторону параллелограмма, если его периметр равен 506.
3) 8cd−2(2c+d)2 при c=корень из 3,d=1корень из заранее.
Пусть дана окружность с центром О и в нее вписан треугольник ABC. Соединим центр окружности О с вершинами A и B треугольника, а также опустим высоту ОE на сторону AB с центра окружности. Рассмотрим треугольник OEB, OE перпендикулярна AB, то есть угол OEB – прямой, OB = R (радиусу вписанной окружности) и OE = R/2 (по условию).
Тогда по теореме Пифагора имеем:
BE² = OB² – OE² = R² – (1/4)*R² = (3/4)R²
BE = √((3/4)R²) = R√3 / 2
Так как АО = ОВ и катет ОЕ – общий, то ΔАЕО = ΔВЕО.
Отсюда следует: ЕА = R√3 / 2
Тогда АВ = ВЕ + ВЕ = R√3 / 2 + R√3 / 2 = R√3
Что и требовалось доказать
2.Из условия x0=-a=2, отсюда a=-2, y=x^2-4x+3, подставляем (3;0), получаем 0=9-12+3=0 значит ответ да
3. Ну по идее нужно обнулить икс, поэтому 2x-1>0, x-1<0, x-2<0, получаем
x>1/2, x<1, x<2, то есть если a=2 у нас все числа от 1/2 до 1 являются корнями. ответ да
4.Рассмотрим x^3-ax-1=0. x=0 не является корнем ни при каком a, значит это уравнение равносильно исходному. Если у кубического многочлена 2 действительных корня, то обязательно один из них кратный (потому что комлексных корней у многочлена четное количество), отсюда x^3-ax-1=(x-p)^2(x-t). Раскрываем скобки приравниваем соответствующие коэффициенты друг другу получаем что , при этом корни p и t не совпадают, значит такое a подходит. ответ да