1. Выбери рисунок, на котором изображено множество решений неравенства k2+pk+q>0, зная, что график параболы пересекает ось абсцисс в двух точках — k1 и k2:
Объясняю по требованию). 5^(1-x) = 125 Мы представляем 125 в виде 5^3, так как 5*5*5 = 25*5 = 125 5^(1-x) = 5^3 А теперь мы видим, что в нашем показательном равенстве -(показательная функция - это y=a^x, где a - основание степени, а x - это показатель степени) - основания равны - значит и степени должны быть равны. Поэтому мы "сбрасываем" основания и получаем: 1- x = 3 В итоге: имеем линейное уравнение, которое решается переносом x в правую часть, а 3 в левую (то есть вычитаем 3 из левой и правой частей, затем прибавляем 2 к обеим частям. В заключение умножаем обе части на (-1)) x = -2
5^(1-x) = 125
Мы представляем 125 в виде 5^3, так как 5*5*5 = 25*5 = 125
5^(1-x) = 5^3
А теперь мы видим, что в нашем показательном равенстве -(показательная функция - это y=a^x, где a - основание степени, а x - это показатель степени) - основания равны - значит и степени должны быть равны. Поэтому мы "сбрасываем" основания и получаем:
1- x = 3
В итоге: имеем линейное уравнение, которое решается переносом x в правую часть, а 3 в левую (то есть вычитаем 3 из левой и правой частей, затем прибавляем 2 к обеим частям. В заключение умножаем обе части на (-1))
x = -2
ответ: x={-2}.