В решении.
Объяснение:
упростите дробно - рациональное выражение:
1) х⁷+х⁵/х⁴+х² =
= (х⁵(х² + 1))/(х²(х² + 1)) =
сократить (разделить) (х² + 1) и (х² + 1) на (х² + 1), х⁵ и х² на х²:
= х³;
2) у⁷+у⁹/у⁴+у² =
= (у⁷(1 + у²))/(у²(1 + у²)) =
сократить (разделить) (1 + у²) и (1 + у²) на (1 + у²), у⁷ и у² на у²:
= у⁵;
3) а⁷-а¹⁰/а⁵-а² =
= (а⁷(1 - а³))/(а²(а³ - 1)) =
= (-а⁷(а³ - 1))/(а²(а³ - 1)) =
сократить (разделить) (а³ - 1) и (а³ - 1) на (а³ - 1), а⁷ и а² на а²:
= -а⁵;
4) х⁶-х⁴/х³+х² =
в числителе разность квадратов, разложить по формуле:
=(х³ - х²)(х³ + х²)/(х³ + х²) =
сократить (разделить) (х³ + х²) и (х³ + х²) на (х³ + х²):
= (х³ - х²);
5) а-2b/2b-а =
= (-(2b - a))/(2b - a) =
= -1;
6) 4(a-b)²/2b-2a =
= (4(a - b)(a - b))/ (-2(a - b)) =
сократить (разделить) (a - b) и (a - b) на (a - b), 4 и 2 на 2:
= (2(a - b))/(-1) =
= -2(a - b);
7) (-a-b)²/a+b =
= (a + b)²/(a + b) =
= (a + b)(a + b)/(a + b) =
сократить (разделить) (a + b) и (a + b) на (a + b):
= (a + b);
8) (a-b)²/(b-a)² =
= (a - b)²/(-a + b)² =
= 1.
1 и 2
1 . √2sinx - 1 = 0,
√2sinx = 1,
sinx = 1/√2,
sinx = √2/2,
x = (-1)ⁿ · arcsin(√2/2) + πn, n ∈ Z,
x = (-1)ⁿ · π/4 + πn, n ∈ Z.
ответ: (-1)ⁿ · π/4 + πn, n ∈ Z.
2. tg(x/2)-корень из 3 = 0
1) Переносим то, что не имеет x (то есть, известное значение) в правую часть, тангенс оставляем в покое, на месте:
tg(x/2) = корень из трех
2)Дальше решаем то, как решал обычное тригонометрическое уравнение вроде sin(x) = 1, но немного по-другому: вместо x тебе нужно записать (x/2):
(x/2)=arctg(корень из трех) +pi*n, где n принадлежит Z
(x/2) = pi/3+pi*n
3) Для того, чтобы найти просто x, нам нужно домножить левую и правую части на 2
В решении.
Объяснение:
упростите дробно - рациональное выражение:
1) х⁷+х⁵/х⁴+х² =
= (х⁵(х² + 1))/(х²(х² + 1)) =
сократить (разделить) (х² + 1) и (х² + 1) на (х² + 1), х⁵ и х² на х²:
= х³;
2) у⁷+у⁹/у⁴+у² =
= (у⁷(1 + у²))/(у²(1 + у²)) =
сократить (разделить) (1 + у²) и (1 + у²) на (1 + у²), у⁷ и у² на у²:
= у⁵;
3) а⁷-а¹⁰/а⁵-а² =
= (а⁷(1 - а³))/(а²(а³ - 1)) =
= (-а⁷(а³ - 1))/(а²(а³ - 1)) =
сократить (разделить) (а³ - 1) и (а³ - 1) на (а³ - 1), а⁷ и а² на а²:
= -а⁵;
4) х⁶-х⁴/х³+х² =
в числителе разность квадратов, разложить по формуле:
=(х³ - х²)(х³ + х²)/(х³ + х²) =
сократить (разделить) (х³ + х²) и (х³ + х²) на (х³ + х²):
= (х³ - х²);
5) а-2b/2b-а =
= (-(2b - a))/(2b - a) =
= -1;
6) 4(a-b)²/2b-2a =
= (4(a - b)(a - b))/ (-2(a - b)) =
сократить (разделить) (a - b) и (a - b) на (a - b), 4 и 2 на 2:
= (2(a - b))/(-1) =
= -2(a - b);
7) (-a-b)²/a+b =
= (a + b)²/(a + b) =
= (a + b)(a + b)/(a + b) =
сократить (разделить) (a + b) и (a + b) на (a + b):
= (a + b);
8) (a-b)²/(b-a)² =
= (a - b)²/(-a + b)² =
= 1.
1 и 2
Объяснение:
1 . √2sinx - 1 = 0,
√2sinx = 1,
sinx = 1/√2,
sinx = √2/2,
x = (-1)ⁿ · arcsin(√2/2) + πn, n ∈ Z,
x = (-1)ⁿ · π/4 + πn, n ∈ Z.
ответ: (-1)ⁿ · π/4 + πn, n ∈ Z.
2. tg(x/2)-корень из 3 = 0
1) Переносим то, что не имеет x (то есть, известное значение) в правую часть, тангенс оставляем в покое, на месте:
tg(x/2) = корень из трех
2)Дальше решаем то, как решал обычное тригонометрическое уравнение вроде sin(x) = 1, но немного по-другому: вместо x тебе нужно записать (x/2):
(x/2)=arctg(корень из трех) +pi*n, где n принадлежит Z
(x/2) = pi/3+pi*n
3) Для того, чтобы найти просто x, нам нужно домножить левую и правую части на 2