1. Вычислить без таблиц, используя формулы для суммы и разности синусов
двух углов:
а). sin 105° + sin 75°.
б). sin 105° — sin 75°.
в).sin 11π / 12 + sin 5π / 12 .
г). sin 11π / 12 — sin 5π / 12
д). cos π / 12 + sin 7π / 12 .
е). cos π / 12 — sin 7π / 12 .
2. У данные выражения :
а). sin ( π / 3 + α ) + sin ( π / 3 — α ).
б). sin ( π / 3 + α ) — sin ( π / 3 — α ).
Свойства функции y=x3y=x3
Давайте опишем свойства данной функции:
1. x – независимая переменная, y – зависимая переменная.
2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.
3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.
4. Если x= 0, то и y= 0.
График функции y=x3y=x3
1. Составим таблицу значений:

2. Для положительных значений x график функции y=x3y=x3 очень похож на параболу, ветви которой более "прижаты" к оси OY.
3. Поскольку для отрицательных значений x функция y=x3y=x3 имеет противоположные значения, то график функции симметричен относительно начала координат.
Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).

Эта кривая называется кубической параболой.
Примеры
I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.
1. Построим график функции y=x3y=x3.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

II. Построить график функции y=x3+1y=x3+1.
1. Составим таблицу значений:

2. Построим точки. Мы видим, что эти точки симметричны относительно точки с координатами (0,1). В итоге получаем кубическую параболу, смещенную вверх по оси OY (см. рис. 3).

График функции y = x^2 отображается параболой
Свойства:
1. Если х = 0, то у = 0, т. е. общая точку (0; 0) - начало координат
2. Если х ≠ 0, то у > 0, т. е. все точки параболы, кроме начала координат, лежат над осью абсцисс (ось x)
3. Множеством значений функции у = х^2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т. е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у = х^2 - четная).
5. На промежутке [0; + ∞) функция у = х^2 возрастает
6. На промежутке (-∞; 0] функция у = х^2 убывает
7. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует