1. Выпишите координаты точек А, D, H, F, K 2. Выпишите абсциссы точек B, E, J, M 3. Выпишите ординаты точек C, G, I, L 4. Выпишите координаты точек, лежащих на оси абсцисс. 5. Выпишите координаты точек, лежащих на оси ординат. 6. Выпишите точки, расположенные во II координатной четверти. 7. Выпишите точки, расположенные во IV координатной четверти. 8. Постройте точку Е, симметричную точке Е относительно оси ординат. Выпишите координаты точки Е. 9. Постройте точку. Fi, симметричную точке F относительно оси абсцисс. Выпишите координаты точки F. 10.Постройте точку К1.симметричную точке К относительно начала координат. Выпишите координаты точки К1.
Точки, равноудалённые от данной прямой (по одну её сторону) , образуют прямую, параллельную данной. Это одна из формулировок пятого постулата Евклида: "Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше двух прямых, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше двух прямых. " Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида) . Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида» [3]. Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.
2) a=1 b=-5 c=6 d=b2-4ac d=25-4*6=25-24=1 больше 0, 2 корня
x1= -b+корень из d, делённый на 2a x2= -b-корень из d, делённый на 2а
x1=5+1:2=3 х2= 5-1:2=2 ответ:2 и 3
3)а=1 b= -2 c= -15 d=b2-4ac d= 4-4*(-15)=4+60=64 больше 0, 2 корня x1=-b+корень из d , делённый на 2а x2=-b-корень из d:делённый на 2а
x1=2+8:2=5 х2=2-8:2= -3 ответ: -3 и 5
4)a=1 b=6 c= -40 d=b2-4ac d= 36-4*(-40)= 36+160=196 больше 0, два корня
x1=-b+корень из d , делённый на 2а x2=-b-корень из d:делённый на 2а x1=-6+14=8 х2= -6-14= -20 ответ:-20 и 8 1) a=1 b=6 c=8 d=b2-4ac d=36-4*8=36-32=4 больше 0, два корня
x1=-b+корень из d , делённый на 2а x2=-b-корень из d:делённый на 2а x1= -6+2:2=-2 х2= -6-2:2=-4 ответ: -2 и -4
Это одна из формулировок пятого постулата Евклида:
"Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше двух прямых, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше двух прямых. "
Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида) . Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида» [3]. Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.
d=b2-4ac
d=25-4*6=25-24=1 больше 0, 2 корня
x1= -b+корень из d, делённый на 2a
x2= -b-корень из d, делённый на 2а
x1=5+1:2=3
х2= 5-1:2=2
ответ:2 и 3
3)а=1 b= -2 c= -15
d=b2-4ac
d= 4-4*(-15)=4+60=64 больше 0, 2 корня
x1=-b+корень из d , делённый на 2а
x2=-b-корень из d:делённый на 2а
x1=2+8:2=5
х2=2-8:2= -3
ответ: -3 и 5
4)a=1 b=6 c= -40
d=b2-4ac
d= 36-4*(-40)= 36+160=196 больше 0, два корня
x1=-b+корень из d , делённый на 2а
x2=-b-корень из d:делённый на 2а
x1=-6+14=8
х2= -6-14= -20
ответ:-20 и 8
1) a=1 b=6 c=8
d=b2-4ac
d=36-4*8=36-32=4 больше 0, два корня
x1=-b+корень из d , делённый на 2а
x2=-b-корень из d:делённый на 2а
x1= -6+2:2=-2
х2= -6-2:2=-4
ответ: -2 и -4