1. выпишите три следующих члена последовательности 15; 5; если известно, что она является прогрессией. 2. выпишите три следующих члена последовательности 3; 7; если известно, что она является арифметической прогрессией. буду
1) 17ⁿ - 1 = (17 - 1)(17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) = 16( 17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1). Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1). Т.к. один из множителей делится на 14, то и все выражение делится на 14.
Рассматриваем точку (x, y) на этой линии. Квадрат расстояния от неё до точки А равен (x - 0)^2 + (y - 9)^2. Квадрат расстояния до В равен (x - 0)^2 + (y - 1)^2. Если расстояние до А втрое больше, чем до В, значит, квадрат расстояния в 9 раз больше: (x - 0)^2 + (y - 9)^2 = 9((x - 0)^2 + (y - 1)^2) x^2 + y^2 - 18y + 81 = 9x^2 + 9y^2 - 18y + 9 8x^2 + 8y^2 = 72 x^2 + y^2 = 3^2
Получили уравнение окружности с центром в начале координат и радиусом 3.
Проверяем, принадлежат ли точки окружности, для этого подставляем x, y в уравнение и проверяем, удовлетворяется ли оно. С = (-1, 1): (-1)^2 + 1^2 = 9 - не верно, не лежит. F = (2, 3): 2^2 + 3^2 = 9 - не верно, не лежит. G = (4, -1): 4^2 + (-1)^2 = 9 - не верно, не лежит. D = (0, 6): 0^2 + 6^2 = 9 - не верно, не лежит.
Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1).
Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1).
Т.к. один из множителей делится на 14, то и все выражение делится на 14.
(x - 0)^2 + (y - 9)^2 = 9((x - 0)^2 + (y - 1)^2)
x^2 + y^2 - 18y + 81 = 9x^2 + 9y^2 - 18y + 9
8x^2 + 8y^2 = 72
x^2 + y^2 = 3^2
Получили уравнение окружности с центром в начале координат и радиусом 3.
Проверяем, принадлежат ли точки окружности, для этого подставляем x, y в уравнение и проверяем, удовлетворяется ли оно.
С = (-1, 1): (-1)^2 + 1^2 = 9 - не верно, не лежит.
F = (2, 3): 2^2 + 3^2 = 9 - не верно, не лежит.
G = (4, -1): 4^2 + (-1)^2 = 9 - не верно, не лежит.
D = (0, 6): 0^2 + 6^2 = 9 - не верно, не лежит.