1.Выполните умножение
1)7а(а(3)-8а(2)+9)
2) (х-2)(2х+3)
3)(у+3)(у в квадрате +у-6)
2. разложите на множители
1) 12ав-18в(2)
2)21х(7)-7х(4)
3) 8х-8у+ах-ау
3. Решите уравнение
1)5х(2)-15х=0
2) (4х-1)/9-(х+2)/6=2
4. Упростите
2с(3с-7)-(с-1)(с+4)
5. Докажите, что 81(5)-27(6) кратно 8
6. Разложите на множители
х(2)-14х+24
Это одна из формулировок пятого постулата Евклида:
"Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше двух прямых, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше двух прямых. "
Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида) . Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида» [3]. Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.
Первое натуральное число, кратное 4, - это 4. Значит первый член арифметической прогрессии a1 = 4. Разность прогрессии d = 4 (чтобы выполнялось условие кратности 4-м).
Для того, чтобы найти сумму, необходимо определить количество членов прогрессии. Известно, что последний член не должен превышать 150, а значит
an ≤ 150
an = a1 + (n - 1)d
a1 + (n - 1)d ≤ 150
4 + (n - 1)4 ≤ 150
1 + (n - 1) ≤ 37,5
n ≤ 37,5
Но n - целое число. Значит n = 37. Тогда an = 4 + (37 - 1)4 = 148
Формула суммы n членов арифметической прогрессии
S = (a1+ an)n/2
S = (4 + 148)37/2 = 2812
Или проще:
2.) 4+8+12+16+20+24+28+32+36+40+44+48+52+56+60+64+68+72+76+80+84+88+92+96+100+104+108+112+116+120+124+128+132+136+140+144+148=2812