1. выражение а) (6a-3)(a+1)-3a(2a-3) б) 36x(x+2)-(6x+4)² в) 4(c-3)²-(2c-7)(7+2c) 2. разложите на множители а) 36x-x^9 б) 5x²-20xy+25y² 3. выражение 4(2b-b²)²-b²(2b-1)(1+2b)+b²(16b-1) 4. разложите на множители а) a^4-1\16(дробь) б) x-x²+y²-y 5. докажите, что выражение -a²+2a-9, при любых значениях "a" принимает отрицательное значение
1) Точки пересечения с осями.
- с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
- с осью Ох: у = 0.
x^3+x^2-16x-16 = 0.
Преобразуем заданное уравнение:
у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
у = 0, (х-4)(х+4)(х+1) = 0.
Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.
2) Для того, чтобы найти экстремумы, нужно найти производную и приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;
x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.
Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).
3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х = -3 -2.667 -2 1 2 3
у' = 5 0 -8 -11 0 17.
Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).
Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,
а убывает на промежутке (-8/3) < x < 2.
4) Найдем точки перегибов, для этого надо решить уравнение
y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,y'' = 6x+2 = 2(3x+1) = 0.
3 x + 1 = 0.
Отсюда х = (-1/3).
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов.
Если на интервале вторая производная больше 0 , то функция имеет вогнутость на этом интервале, если вторая производная меньше 0, то функция имеет выпуклость.
x = -2 -1 -0.33333 0 1
y'' = -10 -4 0 2 8
Вогнутая на промежутках [-1/3, oo),
Выпуклая на промежутках (-oo, -1/3].
1) Точки пересечения с осями.
- с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
- с осью Ох: у = 0.
x^3+x^2-16x-16 = 0.
Преобразуем заданное уравнение:
у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
у = 0, (х-4)(х+4)(х+1) = 0.
Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.
2) Для того, чтобы найти экстремумы, нужно найти производную и приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;
x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.
Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).
3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х = -3 -2.667 -2 1 2 3
у' = 5 0 -8 -11 0 17.
Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).
Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,
а убывает на промежутке (-8/3) < x < 2.
4) Найдем точки перегибов, для этого надо решить уравнение
y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,y'' = 6x+2 = 2(3x+1) = 0.
3 x + 1 = 0.
Отсюда х = (-1/3).
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов.
Если на интервале вторая производная больше 0 , то функция имеет вогнутость на этом интервале, если вторая производная меньше 0, то функция имеет выпуклость.
x = -2 -1 -0.33333 0 1
y'' = -10 -4 0 2 8
Вогнутая на промежутках [-1/3, oo),
Выпуклая на промежутках (-oo, -1/3].