В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
govnyaskaguly
govnyaskaguly
30.05.2021 06:27 •  Алгебра

1. выражение а) (6a-3)(a+1)-3a(2a-3) б) 36x(x+2)-(6x+4)² в) 4(c-3)²-(2c-7)(7+2c) 2. разложите на множители а) 36x-x^9 б) 5x²-20xy+25y² 3. выражение 4(2b-b²)²-b²(2b-1)(1+2b)+b²(16b-1) 4. разложите на множители а) a^4-1\16(дробь) б) x-x²+y²-y 5. докажите, что выражение -a²+2a-9, при любых значениях "a" принимает отрицательное значение

Показать ответ
Ответ:
Laki333
Laki333
31.10.2022 20:37

1) Точки пересечения с осями.
 - с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
 - с осью Ох: у = 0.
   x^3+x^2-16x-16 = 0.
   Преобразуем заданное уравнение: 
   у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
   у = 0,  (х-4)(х+4)(х+1) = 0.
   Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.

2) Для того, чтобы найти экстремумы, нужно найти производную и  приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.

Квадратное уравнение, решаем относительно x: 

Ищем дискриминант:

D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;

Дискриминант больше 0, уравнение имеет 2 корня:

x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;  

x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.

Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).

3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х =    -3    -2.667    -2      1      2      3 
у' =    5        0        -8     -11    0     17.

Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).

Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,

а убывает на промежутке (-8/3) < x < 2.


4) Найдем точки перегибов, для этого надо решить уравнение

y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,
y'' = 6x+2 = 2(3x+1) = 0.
3 x + 1 = 0.
Отсюда х = (-1/3).

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов.
Если на интервале вторая производная больше 0 , то функция имеет вогнутость на этом интервале, если вторая производная меньше 0, то функция имеет выпуклость.
x =    -2    -1    -0.33333     0       1
y'' = -10    -4         0           2       8
Вогнутая на промежутках [-1/3, oo),
Выпуклая на промежутках (-oo, -1/3].

 


0,0(0 оценок)
Ответ:
SkeetNZ
SkeetNZ
31.10.2022 20:37

1) Точки пересечения с осями.
 - с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
 - с осью Ох: у = 0.
   x^3+x^2-16x-16 = 0.
   Преобразуем заданное уравнение: 
   у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
   у = 0,  (х-4)(х+4)(х+1) = 0.
   Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.

2) Для того, чтобы найти экстремумы, нужно найти производную и  приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.

Квадратное уравнение, решаем относительно x: 

Ищем дискриминант:

D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;

Дискриминант больше 0, уравнение имеет 2 корня:

x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;  

x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.

Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).

3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х =    -3    -2.667    -2      1      2      3 
у' =    5        0        -8     -11    0     17.

Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).

Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,

а убывает на промежутке (-8/3) < x < 2.


4) Найдем точки перегибов, для этого надо решить уравнение

y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,
y'' = 6x+2 = 2(3x+1) = 0.
3 x + 1 = 0.
Отсюда х = (-1/3).

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов.
Если на интервале вторая производная больше 0 , то функция имеет вогнутость на этом интервале, если вторая производная меньше 0, то функция имеет выпуклость.
x =    -2    -1    -0.33333     0       1
y'' = -10    -4         0           2       8
Вогнутая на промежутках [-1/3, oo),
Выпуклая на промежутках (-oo, -1/3].

 


0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота