сos(4arctgx)=1/2
4arctgx=±arccos(1/2)+2πn, n∈Z;
4arctgx=±π/3+2πn, n∈Z;
arctgx=±π/12+πn/2, n∈Z;
x=tg(±π/12+πn/2), n∈Z;
cos((±π/12+πn/2))≠0
Поскольку арктангенс - это угол из (-π/2;π/2), при n =0 получим два ответа х=tg(±π/12).
tg(π/12)=(tg(π/4-π/6))=(1 -√3/3)/ (1+√3/3)=
(3-√3)/(3+√3) = (3-√3)²/(3²-(√3)² ) =(12-2√3)/(9-3)=2-√3/3
tg(-π/12)=-tg(π/12)=-(2-√3/3)=-2+√3/3
При n=1 х=tg(±π/12+π/2), указанному промежутку удовлетворяет tg(5π/12)=(tg(π/4+π/6))=(1 +√3/3)/ (1-√3/3)=
(3+√3)/(3-√3) = (3+√3)²/(3²-(√3)² ) =(12+2√3)/(9-3)=2+√3/3
При n=-1 х=tg(±π/12-π/2), указанному промежутку удовлетворяет tg(-5π/12)=-tg5π/12=-(2+√3/3 )=-2-√3/3
При n=2 х=tg(±π/12+π); и при n=-2 х=tg(±π/12-π), Корней нет. Остальные можно не проверять, они не войдут в промежуток
(-π/2;π/2).
ответ. х=±(2-√3/3); х=±(2+√3/3 )
1)Решение системы уравнений х=1
у=2
3)Решение системы уравнений х=1
у=1
5)Решение системы уравнений х=1
7)Решение системы уравнений х= -1
Объяснение:
1)2х+у=4
3х-2у= -1
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=4-2х
3х-2(4-2х)= -1
3х-8+4х= -1
7х= -1+8
7х=7
х=1
у=4-2*1
Решение системы уравнений х=1
3)3х+у=4
5х+3у=8
у=4-3х
5х+3(4-3х)=8
5х+12-9х=8
-4х=8-12
-4х= -4
у=4-3*1
5)3х-у=1
2х+3у=8
-у=1-3х
у=3х-1
2х+3(3х-1)=8
2х+9х-3=8
11х=8+3
11х=11
у=3*1-1
7)3х+2у= -1
2х-у= -3
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
-у= -3-2х
у=3+2х
3х+2(3+2х)= -1
3х+6+4х= -1
7х= -1-6
7х= -7
х= -1
у=3+2*(-1)
у=3-2
Решение системы уравнений х= -1
сos(4arctgx)=1/2
4arctgx=±arccos(1/2)+2πn, n∈Z;
4arctgx=±π/3+2πn, n∈Z;
arctgx=±π/12+πn/2, n∈Z;
x=tg(±π/12+πn/2), n∈Z;
cos((±π/12+πn/2))≠0
Поскольку арктангенс - это угол из (-π/2;π/2), при n =0 получим два ответа х=tg(±π/12).
tg(π/12)=(tg(π/4-π/6))=(1 -√3/3)/ (1+√3/3)=
(3-√3)/(3+√3) = (3-√3)²/(3²-(√3)² ) =(12-2√3)/(9-3)=2-√3/3
tg(-π/12)=-tg(π/12)=-(2-√3/3)=-2+√3/3
При n=1 х=tg(±π/12+π/2), указанному промежутку удовлетворяет tg(5π/12)=(tg(π/4+π/6))=(1 +√3/3)/ (1-√3/3)=
(3+√3)/(3-√3) = (3+√3)²/(3²-(√3)² ) =(12+2√3)/(9-3)=2+√3/3
При n=-1 х=tg(±π/12-π/2), указанному промежутку удовлетворяет tg(-5π/12)=-tg5π/12=-(2+√3/3 )=-2-√3/3
При n=2 х=tg(±π/12+π); и при n=-2 х=tg(±π/12-π), Корней нет. Остальные можно не проверять, они не войдут в промежуток
(-π/2;π/2).
ответ. х=±(2-√3/3); х=±(2+√3/3 )
1)Решение системы уравнений х=1
у=2
3)Решение системы уравнений х=1
у=1
5)Решение системы уравнений х=1
у=2
7)Решение системы уравнений х= -1
у=1
Объяснение:
1)2х+у=4
3х-2у= -1
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=4-2х
3х-2(4-2х)= -1
3х-8+4х= -1
7х= -1+8
7х=7
х=1
у=4-2х
у=4-2*1
у=2
Решение системы уравнений х=1
у=2
3)3х+у=4
5х+3у=8
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=4-3х
5х+3(4-3х)=8
5х+12-9х=8
-4х=8-12
-4х= -4
х=1
у=4-3х
у=4-3*1
у=1
Решение системы уравнений х=1
у=1
5)3х-у=1
2х+3у=8
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=1-3х
у=3х-1
2х+3(3х-1)=8
2х+9х-3=8
11х=8+3
11х=11
х=1
у=3х-1
у=3*1-1
у=2
Решение системы уравнений х=1
у=2
7)3х+2у= -1
2х-у= -3
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
-у= -3-2х
у=3+2х
3х+2(3+2х)= -1
3х+6+4х= -1
7х= -1-6
7х= -7
х= -1
у=3+2х
у=3+2*(-1)
у=3-2
у=1
Решение системы уравнений х= -1
у=1