1) Выразить переменную у через переменную х
А) - 2х + у =15; б) 2у – 4х = 6; в) 11х – у = -7
2) Построить график уравнения 2х +у -3 = 0
(подсказка: выразить у через х, составить таблицу из 2 точек и по этим точкам на
координатной плоскости провести прямую)
Объяснение:
Когда основания одинаковые, то вот что с умножением и делением:
а² * а³ = (например)
а³ : а² = (например)
Когда показатели одинаковые, то вот:
а² + б² = (а + б)²
а² - б² = (а - б)²
а² : б² = (а : б)²
а² * б² = (а * б)²
Когда минус:
-а² = -(а * а)
(-а)² = (-а * -а)² (если показатель чётный, то на выходе будет положительное число, если не четный, то отрицательное)
Несколько степеней:
(а²)³ =
1. а)
б)
в)
2.
3. а)
б)
4.
Извини, остальные не успеваю, надеюсь я понятно объяснил и ты сможешь их сам решить(
Даны координаты вершины треугольника ABC :А(1;0) ,В(13;-19),С(17;13) найти уравнение стороны АВ и АС и их угловые коэффициенты.
Находим векторы.
АВ = В(13;-19) - А(1;0) = (12; -19). По координатам вектора сразу определяется угловой коэффициент прямой АВ.
к(АВ) = Δу/Δх = -19/12.
Уравнение АВ: (x- 1)/12 = y/(-19) каноническое, или
19x + 12y - 19 = 0 общего вида, или
у = (-19/12)х + (19/12) с угловым коэффициентом.
АС = С(17;13) - А(1;0) = (16; 13). По координатам вектора сразу определяется угловой коэффициент прямой АС.
к(АС) = Δу/Δх = 13/16.
Уравнение АС: (x- 1)/16 = y/13) каноническое, или
13x - 16y - 13 = 0 общего вида, или
у = (13/16)х - (13/16) с угловым коэффициентом.