1) x^2 + 4x + 8y -16 =0 Классифицировать и найти характеристики 2) Парабола с фокусом (1,0) и директрисой y=-2
[10:50 AM]
3) Даны фокусы эллипса (0,2) и (0, 6). Вычислить его площадь, если известно что он касается оси абсцисс.
4) Изобразить поверхность z^2 + y^2 +4y + 6x - 8 =0
5) Парабола вращается вокруг оy
y = x^2 -1
если число закачивается на 0, то в квадрате оно заканчивается на 0
если число закачивается на 1, то в квадрате оно заканчивается на 1
если число закачивается на 2, то в квадрате оно заканчивается на 4
если число закачивается на 3, то в квадрате оно заканчивается на 9
если число закачивается на 4, то в квадрате оно заканчивается на 6
если число закачивается на 5, то в квадрате оно заканчивается на 5
если число закачивается на 6, то в квадрате оно заканчивается на 6
если число закачивается на 7, то в квадрате оно заканчивается на 9
если число закачивается на 8, то в квадрате оно заканчивается на 4
если число закачивается на 9, то в квадрате оно заканчивается на 1
все, вариантов не осталось. Доказано.
тогда х-1 и х+1 - целые числа, расположенные слева и справа
от числа х, соответственно.
По условию, сумма квадратов данных чисел равна 869.
Составим уравнение:
(х-1)²+х²+(х+1)²=869
х²-2х+1+х²+х²+2х+1=869
3х²+2=869
3х²=869-2
3х²=867
х²=867:3
х²=289
х=
x=
1) x=17
x-1=17-1=16
x+1=17+1=18
Получаем, 16, 17 и 18 - три последовательных целых числа
Проверка: 16²+17²+18²=256+289+324=869
2) х=-17
х-1=-17-1=-18
х+1=-17+1=-16
Получаем, -18, -17 и -16 - три последовательных целых числа
Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869
ответ: 16, 17 и 18; -18, -17 и -16