1) Чтобы раскрыть скобки, надо почленно умножить сомножитель который стоит перед скобкой, на каждое число или буквенное (буквенно-цифровое) выражение, которое стоит в скобках, не забывая при этом о знаках: минус на минус даёт плюс; плюс на минус даёт минус; плюс на плюс даёт плюс:
а · (-36+2с-у)= - 36а + 2ас - ау
Здесь мы сначала а умножили на -36 - получилось - 36а;
затем а умножили на 2с - получилось 2 ас,
затем а умножили на -у - получилось - ау.
2) Здесь всё сделали аналогично:
-1,5 · (2х - 4у) = -3х + 6у
3) А здесь после раскрытия скобок привели подобные:
См. Объяснение.
Объяснение:
1) Чтобы раскрыть скобки, надо почленно умножить сомножитель который стоит перед скобкой, на каждое число или буквенное (буквенно-цифровое) выражение, которое стоит в скобках, не забывая при этом о знаках: минус на минус даёт плюс; плюс на минус даёт минус; плюс на плюс даёт плюс:
а · (-36+2с-у)= - 36а + 2ас - ау
Здесь мы сначала а умножили на -36 - получилось - 36а;
затем а умножили на 2с - получилось 2 ас,
затем а умножили на -у - получилось - ау.
2) Здесь всё сделали аналогично:
-1,5 · (2х - 4у) = -3х + 6у
3) А здесь после раскрытия скобок привели подобные:
3·(-4х+6) - (1-12х) = -12х +18 -1 + 12х = 17.
ПРИМЕЧАНИЕ.
В тетради надо записать только решения:
а · (-36+2с-у)= - 36а + 2ас - ау
-1,5 · (2х - 4у) = -3х + 6у
3·(-4х+6) - (1-12х) = -12х +18 -1 + 12х = 17.
Слова писать не надо, т.к. это - объяснение.
1.а) Область определения находим из системы неравенств
х+44>0; 2х-22>0;
х>-44;х>22/2⇒x∈(11;+∞).
4а) ㏒₃(х-4)+㏒₃(х+7)=㏒₃26; ОДЗ уравнения х больше 4, (х-4)(х+7)=26;
х²+7х-4х-28-26=0; х²+3х-54=0; По теореме, обратной теореме Виета, х₁=-9∉ОДЗ, не является корнем. х₂=6
4в) ㏒²₂х-㏒₂х-30=0; ОДЗ уравнения х∈(0;+∞) Пусть ㏒₂х=у, тогда у²-у-30=0; по теореме, обр. теореме Виета, у₁=-5; у₂=6 тогда ㏒₂х=-5; х=2⁻⁵; х=1/32 -входит в ОДЗ, корень.
㏒₂х=6; х=2⁶=64- входит в ОДЗ, корень.
5а)㏒₁/₅(22х-2)≥0
ОДЗ неравенства 22х-2>0; x>1/11
Заменим 0=㏒₁/₅1, т.к. основание логарифма меньше 1, то 22х-2≤1
22х≤3; х≤3/22; с учетом ОДЗ решением неравенства будет х∈(1/11;3/11)