2 sin x – cos x =1 2sin x/2 * cos x/2 – cos² x/2 +sin² x/2 = sin² x/2 + cos² x/2 2sin x/2 * cos x/2 – 2cos² x/2 = 0 2cos x/2 * (sin x/2 – cos x/2) =0 cos x/2 * (sin x/2 – cos x/2) =0 cos x/2 = 0 или sin x/2 – cos x/2 = 0 cos x/2 = 0; x/2 = π/2 + πk; x = π + 2πk; k Є Z; sin x/2 – cos x/2 = 0 – однородное уравнение первой степени. Делим обе его части на cos x/2 (cos x/2≠ 0, так как, если cos x/2 = 0, sin x/2 – 0 = 0 => sin x/2 = 0, что противоречит тождеству sin² x/2 + cos² x/2 = 1). Получим tg x/2 – 1 = 0; tg x/2 = 1; x/2 = π/4 + πn; x = π/2 + 2πn; n Є Z. 1) x = π + 2πk; k Є Z; y = π/2 + π + 2πk; k Є Z; y = π + 2πk; k Є Z; (π + 2πk; k Є Z; π + 2πk; k Є Z;)
2) x = π/2 + 2πn; n Є Z. y = π/2 + π/2 + 2πn; n Є Z. y = π + 2πn; n Є Z. (π + 2πk; k Є Z; π + 2πk; k Є Z)
ответ: (π + 2πk; k Є Z; π + 2πk; k Є Z) ; (π + 2πk; k Є Z; π + 2πk; k Є Z)
2. sinx-cosy=0 sinx+cosy = √3 складываем 2sinx = √3 sinx = √3/2 x = (-1)^n*arcsin(√3/2) + πk, k ∈ Z x = (-1)^n*arcsin(π/3) + πk, k ∈ Z
sinx-cosy=0 sinx+cosy = √3 (умножим на - 1) sinx - cosy = 0 - sinx - cosy = √3 складываем - 2сosy = √3 cosy = - √3/2 y = (+ -)*arccos(- √3/2) + 2πn, n ∈ Z y = (+ -)*arccos(5π/6) + 2πn, n ∈ Z (x = (-1)^n*arcsin(π/3) + πk, k ∈ Z ; y = (+ -)*arccos(5π/6) + 2πn, n ∈ Z)
V=Sосн*H Sосн=(1/2)*d₁*d₂ d₁=6√3 большая диагональ призмы составляет с основанием угол 30°. прямоугольный треугольник: гипотенузы - большая диагональ призмы катет - большая диагональ основания призмы d₁=6√3 катет - высота призмы H угол между катетом d₁ и гипотенузой 30°. tg30°=H/d₁. H=d₁*tg30°. H=6
меньшая диагональ призмы образует с основанием угол 45°. прямоугольный треугольник: гипотенуза - меньшая диагональ призмы катет - меньшая диагональ основания d₂ катет - высота призмы Н=8 угол между катетом d₂ и гипотенузой равен 45°, => d₂=H, =>d₂=6 V=(1/2)*6√3*6*6 V=108√3
1.
y - x = П/2
второе:cosx+siny=1
y = π/2 + x
cosx + cos(π/2 + x) = 1
y = π/2 + x
cosx + cos(π/2 + x) = 1
y = π/2 + x
cosx - sinx = 1
2 sin x – cos x =1
2sin x/2 * cos x/2 – cos² x/2 +sin² x/2 = sin² x/2 + cos² x/2
2sin x/2 * cos x/2 – 2cos² x/2 = 0
2cos x/2 * (sin x/2 – cos x/2) =0
cos x/2 * (sin x/2 – cos x/2) =0
cos x/2 = 0 или sin x/2 – cos x/2 = 0
cos x/2 = 0;
x/2 = π/2 + πk;
x = π + 2πk; k Є Z;
sin x/2 – cos x/2 = 0 – однородное уравнение первой степени.
Делим обе его части на cos x/2 (cos x/2≠ 0, так как,
если cos x/2 = 0, sin x/2 – 0 = 0 => sin x/2 = 0, что противоречит тождеству sin² x/2 + cos² x/2 = 1).
Получим tg x/2 – 1 = 0;
tg x/2 = 1;
x/2 = π/4 + πn;
x = π/2 + 2πn; n Є Z.
1) x = π + 2πk; k Є Z;
y = π/2 + π + 2πk; k Є Z;
y = π + 2πk; k Є Z;
(π + 2πk; k Є Z; π + 2πk; k Є Z;)
2) x = π/2 + 2πn; n Є Z.
y = π/2 + π/2 + 2πn; n Є Z.
y = π + 2πn; n Є Z.
(π + 2πk; k Є Z; π + 2πk; k Є Z)
ответ: (π + 2πk; k Є Z; π + 2πk; k Є Z) ;
2.(π + 2πk; k Є Z; π + 2πk; k Є Z)
sinx-cosy=0
sinx+cosy = √3
складываем
2sinx = √3
sinx = √3/2
x = (-1)^n*arcsin(√3/2) + πk, k ∈ Z
x = (-1)^n*arcsin(π/3) + πk, k ∈ Z
sinx-cosy=0
sinx+cosy = √3 (умножим на - 1)
sinx - cosy = 0
- sinx - cosy = √3
складываем
- 2сosy = √3
cosy = - √3/2
y = (+ -)*arccos(- √3/2) + 2πn, n ∈ Z
y = (+ -)*arccos(5π/6) + 2πn, n ∈ Z
(x = (-1)^n*arcsin(π/3) + πk, k ∈ Z ; y = (+ -)*arccos(5π/6) + 2πn, n ∈ Z)
Sосн=(1/2)*d₁*d₂
d₁=6√3
большая диагональ призмы составляет с основанием угол 30°.
прямоугольный треугольник:
гипотенузы - большая диагональ призмы
катет - большая диагональ основания призмы d₁=6√3
катет - высота призмы H
угол между катетом d₁ и гипотенузой 30°.
tg30°=H/d₁. H=d₁*tg30°. H=6
меньшая диагональ призмы образует с основанием угол 45°.
прямоугольный треугольник:
гипотенуза - меньшая диагональ призмы
катет - меньшая диагональ основания d₂
катет - высота призмы Н=8
угол между катетом d₂ и гипотенузой равен 45°, =>
d₂=H, =>d₂=6
V=(1/2)*6√3*6*6
V=108√3