1 ЗАДАЧКА
Является ли равенство (x−1)2(x+1)2=(x2+1)2−4x2 тождеством?
Докажи.
После преобразований в левой части получится выражение:
x4−2x2+1
другой ответ
−3x+1
x4−1
x4−4x2+1
А в правой:
x4−2x2+1
другой ответ
−3x+1
x4−1
x4−4x2+1
Вывод: равенство тождеством.
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня
1) х1 = - √13; Второй корень может быть равен √13, потому что в квадратном уравнении произведение корней равно свободному члену. В этом случае свободный член будет рациональным , то есть равен - 13.
(х - √13)(х + √13) = 0
х² - 13 = 0 квадратное уравнение с рациональными коэффициентами
2) х1 = √7 Аналогично получим второй корень х2 = -7 и уравнение
х² - 7 = 0.
3) х1 = 3 - √5 . И в этом случае 2-й корень равен х2 = 3 + √5
Тогда сумма корней равна 2-му коэффициенту уравнения, взятому с противоположным знаком, то есть b = - (3 - √5 + 3 + √5) = - 6
А произведение корней равно свободному члену
c = (3 - √5)(3 + √5) = 9 - 5 = 4
И уравнение имеет вид: х² - 6х + 4 = 0