Зародилась математика в древнейшие времена. В те доисторические времена человек активно осваивал окружающий мир, накапливал фактический материала и преумножал жизненный опыт. Долгое время счет у древних людей был вещественным, то есть осуществлялся с палочек, камней, пальцев и прочего. Постепенно к первобытному человеку пришло понимание того, что число можно отделить от его конкретного представителя. Древние люди сумели понять, что два яблока и два камня, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека. Так постепенно сформировалось понятие о натуральных числах, а к концу VII V вв. до н. э. и другие основные постулаты математики.
Бурное развитие математической науки обусловлено потребностями хозяйственной жизни человека. Земледелие, ремесло, обмен, торговля, налоги, обеспечение продовольствием, создание армии, измерение площадей земельных владений, объемов сосудов и многое другое заставляло людей заниматься счетом и вычислением. Со временем накопленные знания были приведены в четкую систему, благодаря чему человек смог вычленить особые понятия, методы и решения трудных задач, которые впоследствии легли в основу современной математической науки.
Еще в глубокой древности задолго до наступления нашей эры были сформулированы три основных понятия математики: число, величина и геометрическая фигура. В процессе тщательного счета и упорядочивания убитых на охоте зверей, сделанных горшков в мастерской, собранного урожая, возникло понятие натурального числа, как количественного, так и порядкового. В результате сравнения масс и объемов разнообразных сосудов и предметов человек пришел к пониманию понятия величина. В следствие изучения форм изделий и предметов, зданий и земельных участков и т.д. люди сформировали понятие геометрической фигуры, являющейся частью геометрического (буквально означает — измерение земли) пространства.ормированные абстрактные понятия были введены в арифметические действия над натуральными числами. Спустя некоторое время была установлена связь между натуральными числами и величинами, в результате чего появились дробные числа. Они получались в случае, когда результат измерений не выражался натуральным числом. Постепенно путем наблюдений и простейших логических рассуждений, люди пришли к простым, но гениальным по своей сути формулам для вычисления геометрических величин — длин, площадей, объемов. Из этого следует, что в это время арифметика и геометрия считались частями одного целого.
Бурное развитие математической науки обусловлено потребностями хозяйственной жизни человека. Земледелие, ремесло, обмен, торговля, налоги, обеспечение продовольствием, создание армии, измерение площадей земельных владений, объемов сосудов и многое другое заставляло людей заниматься счетом и вычислением. Со временем накопленные знания были приведены в четкую систему, благодаря чему человек смог вычленить особые понятия, методы и решения трудных задач, которые впоследствии легли в основу современной математической науки.
Еще в глубокой древности задолго до наступления нашей эры были сформулированы три основных понятия математики: число, величина и геометрическая фигура. В процессе тщательного счета и упорядочивания убитых на охоте зверей, сделанных горшков в мастерской, собранного урожая, возникло понятие натурального числа, как количественного, так и порядкового. В результате сравнения масс и объемов разнообразных сосудов и предметов человек пришел к пониманию понятия величина. В следствие изучения форм изделий и предметов, зданий и земельных участков и т.д. люди сформировали понятие геометрической фигуры, являющейся частью геометрического (буквально означает — измерение земли) пространства.ормированные абстрактные понятия были введены в арифметические действия над натуральными числами. Спустя некоторое время была установлена связь между натуральными числами и величинами, в результате чего появились дробные числа. Они получались в случае, когда результат измерений не выражался натуральным числом. Постепенно путем наблюдений и простейших логических рассуждений, люди пришли к простым, но гениальным по своей сути формулам для вычисления геометрических величин — длин, площадей, объемов. Из этого следует, что в это время арифметика и геометрия считались частями одного целого.
1__Для начала признаки делимости на 9:
"Число делится на 9 , если сумма его цифр делится на 9";
2___также если один из множителей делится на число "а", то и произведение делится на число "а"
3___А вот Сумма/разность, делится на число "а", если все ее члены делятся н это число.
теперь, все просто, число "207"=2+0+7=9,9 делится на 9(1), следовательно 207^5 делится на 9 из (2){207*207*207*207*207};
"72"=7+2=9, 9 делится на 9(1),следовательно 72^6 делится на 9 из (2);
И исходя из выше названных причин и упираясь на свойство (3) ,можно сделать вывод , что 207^5-72^6 делится на 9 .
ч.т.д.