1. Замене одночленом так, чтобы получившееся равенство было толедеством:
100 – 40m + 4m²= (* - 2m)²
2. Замените
одночленом так, чтобы
получившееся равенство было тождеством:
36а — 108a²c + 81с² = (- 9с)²
5. Замените знак
одночленом так, чтобы
полученный трёхчлен можно было записать в виде
квадрата двучлена:
* — 2by +y.
6. Замените знак одночленом так, чтобы
полученный трёхчлен можно было записать в виде
квадрата двучлена:
9c2 + 12c + *
Заметим, что периметр шоколадки станет равным 10, если она будет состоять из прямоугольников 1 x 4 или 2 x 3, т. е. по одной стороне одна клетка, по другой 4 или по одной 2 клетки, по другой 3. По условию Петя начинает игру первый. Покажем, что у него существует выигрышная стратегия. Допустим, что после его очередного хода шоколадка приняла форму квадрата со сторонами 5 x 5. В этом случае, какой бы ход ни сделал Вася, Петя побеждает следующим ходом. Это наглядно показано на рисунке. Следовательно, Петина стратегия заключается в урезании шоколадки на каждом своем ходу до квадрата. На первом ходу он отламывает от шоколадки кусок 1 x 2019, превращая шоколадку в квадрат 2019 x 2019. Затем каждый раз, когда Вася отламывает n клеток по горизонтали, Петя отламывает n клеток по вертикали, превращая шоколадку в квадрат размером (2019-n) x (2019-n). В результате найдется Васин ход, после которого по горизонтали или по вертикали шоколадки останется не более пяти клеток. Следующим своим ходом Петя либо сразу побеждает, если клеток менее пяти, либо урезает шоколадку до квадрата размером 5 x 5, если клеток ровно 5. Далее после любого Васиного хода Петя побеждает согласно рисунку ниже.
Объяснение:
Я буду искать только действительные корни :
sqrt(x-2)+sqrt(4-x)=x^2-6x+11
Возведем в квадрат:
2+2sqrt((x-2)(4-x)) = (x^2-6*x+11)^2
2+2sqrt(-x^2+6x-8) = (x^2-6*x+11)^2
Пусть a = -x^2+6x-8 ,тогда :
2+sqrt(a) = (a+3)^2
2+sqrt(a) = 9+a^2-6*a
a^2-6a-2sqrt(a)+7 = 0
Пусть sqrt(a) = y,тогда :
y^4-6y^2-2y+7 = 0 . Сразу можно заметить ,что один из корней 1.Предположим ,что это выражение y-1 .Тогда (y-1)*a = y^4-6*y^2-2*y+7 .а = y^3+y^2-5y-7 .Тогда y^4-6y^2-2*y+7 = (y-1)*(y^3+y^2-5y-7) = 0. Будем искать корни (y^3+y^2-5y-7) по формуле Кардано. Вычисления очень сложные ,поэтому я их опущу,можете почитать о этой формуле в интернете .В общем второй корень приблизительно равен y = 2.37. Найдем теперь а1 = 1,а2 = 5.6169. Вернемся к уравнению a = -x^2+6x-8 ,тогда получаем x^2-6x+9 = 0 , x = 3 и x = 0.43,x = 5.57 ,однако подставляя второй и третий корень в исходное уравнение видим ,что в таком случае подкоренное выражение <0,такие корни не подходят.
ответ : 3