а³-25а = 0 а²-4а+5 Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель не равен 0: а³-25а=0, а²-4а+5≠0 решаем уравнение: а³-25а=0, а(а²-25)=0 , произведение множителе равно нулю тогда и только тогда , когда хотя бы один из множителей равен 0: а=0 или а²-25=0 а²=25, а=5, а=-5 Проверка: найденные значения подставляем во второе условие. а=0, 0²-4·0+5=5≠0-явл. корнем а=5, 5²-4·5+5=25-20+5=10≠0-явл. корнем а=-5, (-5)²-4·(-5)+5=25+20+5=50≠0-явл. корнем ответ:дробь равна 0 при а=0,а=5,а=-5
8). в одной системе координат построить графики функций: а) у = - 1/5x - это график прямой пропорциональности, Он проходит через начало координат. Значит 1 точка известна. Вторую находят, подставив любое значение х и высчитывают значение у. Например: х = 1 у = -(1/5)*1 = -(1/5). Чтобы числа были целыми: х = 5 у = -(1/5)*5 = -1. б) у = 5 - это горизонтальная линия, проходящая через ординату у = 5. 6) линейная функция, график которой параллелен прямой у = 4 + 7х и проходит через начало координат.- это у = 7х.
а²-4а+5
Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель не равен 0:
а³-25а=0,
а²-4а+5≠0
решаем уравнение: а³-25а=0, а(а²-25)=0 , произведение множителе равно нулю тогда и только тогда , когда хотя бы один из множителей равен 0:
а=0 или а²-25=0
а²=25, а=5, а=-5
Проверка:
найденные значения подставляем во второе условие.
а=0, 0²-4·0+5=5≠0-явл. корнем
а=5, 5²-4·5+5=25-20+5=10≠0-явл. корнем
а=-5, (-5)²-4·(-5)+5=25+20+5=50≠0-явл. корнем
ответ:дробь равна 0 при а=0,а=5,а=-5
а) у = - 1/5x - это график прямой пропорциональности, Он проходит через начало координат. Значит 1 точка известна. Вторую находят, подставив любое значение х и высчитывают значение у. Например:
х = 1 у = -(1/5)*1 = -(1/5). Чтобы числа были целыми:
х = 5 у = -(1/5)*5 = -1.
б) у = 5 - это горизонтальная линия, проходящая через ординату у = 5.
6) линейная функция, график которой параллелен прямой у = 4 + 7х и проходит через начало координат.- это у = 7х.