1 запишите область определения функций 2найдите множество значений функции 3 определите функции монотонности функции 4определите экстремумы функции 2 задание найти функции, обратную к данной 1) y=-5x+4 3 задание найти область определения и множество значений функции обратной к данной 1) y=1/4x-7
Метод сложения — это когда мы делаем так, чтобы можно было сократить одно из неизвестных в системе. То есть, нам нужно умножить одно из уравнений на такое число, чтобы при сложении с другим уравнением сократилось одно неизвестное (x или y)
Я умножил нижнее уравнение на -3, потому что сверху у меня стоит неизвестное 3x, а чтобы его сократить, надо его сложить с -3x
Складываем уравнения, то есть часть, находящуюся слева от равно первого уравнения прибавляем к левой части второго, так же и с правыми частями:
3x + 2y - 3x - 15y = 19 - 45
-13y = -26
y = 2
Подставляем полученный y в одно из уравнений, например, в первое:
находим фокусное расстояние (f)
d=1/f 4=1/f
f=1/4 м= 0.25м
г-увеличение
г= f/d= 3/1=3
d=1м расстояние от предмета до линзы
f - расстояние от линзы до изображения
1/f=1/d+1/f
1/f= 1/f-1/d= 1/0.25 - 1= 1/3
f=3 м
ответ f= 0.25 м
г= 3
f= 3 м
x = 5, y = 2
Объяснение:
Метод сложения — это когда мы делаем так, чтобы можно было сократить одно из неизвестных в системе. То есть, нам нужно умножить одно из уравнений на такое число, чтобы при сложении с другим уравнением сократилось одно неизвестное (x или y)
Я умножил нижнее уравнение на -3, потому что сверху у меня стоит неизвестное 3x, а чтобы его сократить, надо его сложить с -3x
Складываем уравнения, то есть часть, находящуюся слева от равно первого уравнения прибавляем к левой части второго, так же и с правыми частями:
3x + 2y - 3x - 15y = 19 - 45
-13y = -26
y = 2
Подставляем полученный y в одно из уравнений, например, в первое:
3x + 2*2 = 19
3x = 15
x = 5