1) запишите с характеристического свойства множества А, двухзначных натуральных чисел , кратных 27 2) запишите перечисление элементов множество B = { X | X^2 -9=0}
1) (x+10)(x-9)-(x-8)²=0 ЧТОБЫ РЕШИТЬ ЭТО УРАВНЕНИЕ НАМ НУЖНО: Раскрыть скобки Разложить x²-9x+10x-90-(x²-16x+64)=0 Раскрыть скобки x²-9x+10x-90-x²+16x+64)=0 Сократить противоположные слагаемые Вычислить 17x-154=0 Перенести константу в правую часть равенства 17x=154 Разделить обе стороны
ОТВЕТ: 154 x= —— 17
2) (x+11)(x+9)-(x-3)(x+40)=0 ЧТОБЫ РЕШИТЬ ЭТО УРАВНЕНИЕ НАМ НУЖНО: Раскрыть скобки x²+9x+11x+99-(x²+40x-3x-120)=0 Привести подобные члены x²+9x+11x+99-(x²+37x-120)=0 Раскрыть скобки x²+9x+11x+99-x²-37x+120=0 Сократить противоположные слагаемые Вычислить -17x+219=0 Перевести константу в правую часть равенства -17x = -219 Разделить обе стороны
ОТВЕТ: 219 x=—— 17
3) (x-6)(7+x)+(3-x)(3+x)=0 ЧТОБЫ РЕШИТЬ ЭТО УРАВНЕНИЕ НАМ НУЖНО: Раскрыть скобки Упростить 7x+x²-42-6x+9-x²=0 Сократить противоположные слагаемые Вычислить x-30=0 Перенести константу в правую часть равенства
ОТВЕТ: x=33
4) (x-4)(4+x)-(1-x)(9-x)=0 ЧТОБЫ РЕШИТЬ ЭТО УРАВНЕНИЕ НАМ НУЖНО: Избавиться от знаков умножения Раскрыть скобки (x-4)(x+4)-(9-x-9x+x²)=0 Упростить Привести подобные члены x²-16-(9-10x+x²)=0 Раскрыть скобки x²-16-9+10x-x²=0 Сократить противоположные слагаемые Вычислить -25+10x=0 Перенести константу в правую часть равенства 10x=25 Разделить обе стороны
Первая парабола У=-Х²+4 имеет вершину на оси У (при Х=0 У=4) и ветви ее направлены вниз, т.к. перед Х² минус. Она симметрична оси У.
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.
ЧТОБЫ РЕШИТЬ ЭТО УРАВНЕНИЕ НАМ НУЖНО:
Раскрыть скобки
Разложить
x²-9x+10x-90-(x²-16x+64)=0
Раскрыть скобки
x²-9x+10x-90-x²+16x+64)=0
Сократить противоположные слагаемые
Вычислить
17x-154=0
Перенести константу в правую часть равенства
17x=154
Разделить обе стороны
ОТВЕТ:
154
x= ——
17
2) (x+11)(x+9)-(x-3)(x+40)=0
ЧТОБЫ РЕШИТЬ ЭТО УРАВНЕНИЕ НАМ НУЖНО:
Раскрыть скобки
x²+9x+11x+99-(x²+40x-3x-120)=0
Привести подобные члены
x²+9x+11x+99-(x²+37x-120)=0
Раскрыть скобки
x²+9x+11x+99-x²-37x+120=0
Сократить противоположные слагаемые
Вычислить
-17x+219=0
Перевести константу в правую часть равенства
-17x = -219
Разделить обе стороны
ОТВЕТ:
219
x=——
17
3) (x-6)(7+x)+(3-x)(3+x)=0
ЧТОБЫ РЕШИТЬ ЭТО УРАВНЕНИЕ НАМ НУЖНО:
Раскрыть скобки
Упростить
7x+x²-42-6x+9-x²=0
Сократить противоположные слагаемые
Вычислить
x-30=0
Перенести константу в правую часть равенства
ОТВЕТ:
x=33
4) (x-4)(4+x)-(1-x)(9-x)=0
ЧТОБЫ РЕШИТЬ ЭТО УРАВНЕНИЕ НАМ НУЖНО:
Избавиться от знаков умножения
Раскрыть скобки
(x-4)(x+4)-(9-x-9x+x²)=0
Упростить
Привести подобные члены
x²-16-(9-10x+x²)=0
Раскрыть скобки
x²-16-9+10x-x²=0
Сократить противоположные слагаемые
Вычислить
-25+10x=0
Перенести константу в правую часть равенства
10x=25
Разделить обе стороны
ОТВЕТ:
5
x=—
2
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.