1. жасмина получила заказ на пошив платьев. если она за день шьёт x платьев, то получает прибыль p(x)= -x^2+20 (руб)
сколько платьев она должна шить чтобы получить наибольшую прибыль?
2. найдите соответствующую ей квадратичную функцию и исследуйте её.
найти :
d (f)
e (f)
нули функции
y max и min
монотонность
3. сколько рублей составит наибольшая прибыль?
дана система:
2x+5y=1
x-10y=3
1. Выражаем
Видно что во втором уравнении имеется переменная X с коэффициентом 1,отсюда получается что легче всего выразить переменную Х из второго уравнения.
x=3+10y
2. После того как выразили подставляем в первое уравнение 3+10y вместо переменной Х.
2(3+10y)+5y=1
3. Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки )
6+20y+5y=1
25y=1-6
25y=-5
y=-5:25
y=-0,2
Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти Х и Y, потому что точка пересечения состоит их X и Y.Найдем X, в первом пункте где мы выражали туда подставляем Y.
x=3+10y
x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную X, а на втором переменную Y.
ответ: (1; -0,2)
Решение системы уравнений v=12
z=15
Объяснение:
Решить систему уравнений методом подстановки.
(z+v)/9-(z-v)/3=2
(2z-v)/6-(3z+2v)/3=−20
Первое уравнение умножить на 9, второе на 6, чтобы избавиться от дроби:
(z+v)-3(z-v)=18
(2z-v)-2(3z+2v)=−120
Раскроем скобки:
z+v-3z+3v=18
2z-v-6z-4v= -120
Приведём подобные члены:
4v-2z=18
-4z-5v= -120
Разделим первое уравнение на 2, второе на 5 для удобства вычислений:
2v-z=9
-0,8z-v= -24
Выразим z через v в первом уравнении, подставим выражение во второе уравнение и вычислим v:
-z=9-2v
z=2v-9
-0,8(2v-9)-v= -24
-1,6v+7,2-v= -24
-2,6v= -24-7,2
-2,6v= -31,2
v= -31,2/-2,6
v=12
z=2v-9
z=2*12-9
z=24-9
z=15
Решение системы уравнений v=12
z=15