1. Знайдіть площу квадрата зі стороною 3см. 2. Знайдіть площу квадрата з діагоналлю 5 см.
3. Чому дорівнює площа прямокутного трикутника з катетами 6 см і 8 см?
4. Знайдіть площу паралелограма зі стороною 8 см і висотою 3 см, яка проведена до цієї сторони.
5. Знайдіть площу рівностороннього трикутника зі стороною 4 см.
y= -x² + 4x - 3
Объяснение:
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
Объяснение:
4.
log₀,₅(4-x)≥log₀,₅2-log₀,₅(x-1)
ОДЗ: 4-x>0 x<4 x-1>0 x>1 ⇒ x∈(1;4).
log₀,₅(4-x)-log₀,₅2+log₀,₅(x-1)≥0
log₀,₅((4-x)*(x-1)/2)≥0
(4-x)*(x-1)/2≤0,5⁰
(4-x)*(x-1)/2≤1
(4-x)*(x-1)/2-1≤0
((4x-4-x²+x)-2)/2≤0 |×2
4x-4-x²+x-2≤0
-x²+5x-6≤0 |×(-1)
x²-5x+6≥0
x²-5x+6=0 D=1
x₁=2 x₂=3 ⇒
(x-2)(x-3)≥0
-∞__+__2__-__3__+__+∞ ⇒ x∈(-∞;2]U[3;+∞).
Учитывая ОДЗ:
ответ: x∈(1;2]U[3;4).
5.
{xy+x+y=15 {xy+x+y=15
{x²y+xy²=54 {xy*(x+y)=54
Пусть x+y=t, a xy=v ⇒
{t+v=15 {v=15-t {v=15-t {v=15-t
{tv=54 {t*(15-t)=54 {15t-t²-54=0 |×(-1) {t²-15t+54=0
t²-15t+54=0 D=9 √D=3
{t₁=x+y=6 {y=6-x {y=6-x {y=6-x
{v₁=xy=9 {x*(6-x)=9 {6x-x²-9=0 |×(-1) {x²-6x+9=0
{y=6-x {y=6-x y₁=3
{(x-3)²=0 {x-3=0 x₁=3.
{t₂=x+y=9 {y=9-x {y=9-x {y=9-x
v₂=xy=6 {x*(9-x)=6 {9x-x²-6=0 |(×-1) {x²-9x+6=0 D=57
y₂=(9+√57)/2 y₃=(9-√57)/2
x₂=(9-√57)/2 x₃=(9+√57)/2.
ответ: x₁=3 y₁=3 x₂=(9-√57)/2 y₂=(9+√57)/2
x₃=(9+√57)/2 y₃=(9-√57)/2.
6.
y=eˣ*cosx
y'=(eˣ)'*cosx+eˣ*(cosx)'=eˣ*cosx+eˣ*(-sinx)=eˣ*cosx-eˣ*sinx
y'=eˣ*(cosx-sinx).