Я не согласна с приведенным решением, поскольку новичок не знает, как возводить в квадрат сумму: там, помимо квадратов, есть еще удвоенное произведение. Попробуйте-ка поработать с этим удвоенным произведением. Я бы предложила такое решение: ввести искусственную переменную у, только сначала нужно написать область определения нашего х: поскольку выражение (х - 1) находится под знаком корня, то это выражение не может быть отрицательным, т.е. (х - 1) ≥0, х ≥ 1 (это пригодится попозже). Далее: √(х - 1) = у ⇒ х - 1 = y^2 ⇒ x = y^2 + 1 (ввели новую переменную и подставляем ее в уравнение): √(y^2 + 1 + 3 - 4y) + √(y^2 + 1 + 8 - 6y) = 1 √(y^2 - 4y + 4) + √(y^2 - 6y + 9) = 1 √(y - 2)^2 + √(y - 3)^2 = 1 (y - 2) + (y - 3) = 1 y - 2 + y - 3 = 1 2y = 6 ⇒ y = 3 Теперь возвращаемся к нашей переменной х: √(x - 1) = 3 - возводим обе части уравнения в квадрат: х - 1 = 9 ⇒ х = 10 (сверяем с областью определения нашего х, который должен быть ≥ 1, наш ответ соответствует, так что он правильный).
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки. Решаем две системы
решение системы предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0; 5x-9>1; х²-4х+5≤1; х²-4х+5>0. Решение каждого неравенства системы: х≤20/11 х>1,8 х=2 х- любое О т в е т. 1а) система не имеет решений. б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0 0<5x-9<1 х²-4х+5≥1 х²-4х+5>0 Решение х≤20/11 0<х<1,8 х-любое (так как х²-4х+4≥0 при любом х) х- любое Решение системы 1б) 0<x<1,8, так как (20/11) >1,8 О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 5x-9>1 х²-4х+5≥1 х²-4х+5>0 Решение х≥20/11 х>1,8 х-любое х- любое О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 0<5x-9<1 х²-4х+5≤1 х²-4х+5>0 Решение х≥20/11 0<х<1,8 х=2 х- любое Решение системы 2б) нет решений О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11 или х∈(0;1,8)U(1целая 9/11;+∞)
Я бы предложила такое решение: ввести искусственную переменную у, только сначала нужно написать область определения нашего х: поскольку выражение (х - 1) находится под знаком корня, то это выражение не может быть отрицательным, т.е. (х - 1) ≥0, х ≥ 1 (это пригодится попозже).
Далее: √(х - 1) = у ⇒ х - 1 = y^2 ⇒ x = y^2 + 1 (ввели новую переменную и подставляем ее в уравнение):
√(y^2 + 1 + 3 - 4y) + √(y^2 + 1 + 8 - 6y) = 1
√(y^2 - 4y + 4) + √(y^2 - 6y + 9) = 1
√(y - 2)^2 + √(y - 3)^2 = 1
(y - 2) + (y - 3) = 1
y - 2 + y - 3 = 1
2y = 6 ⇒ y = 3
Теперь возвращаемся к нашей переменной х:
√(x - 1) = 3 - возводим обе части уравнения в квадрат:
х - 1 = 9 ⇒ х = 10 (сверяем с областью определения нашего х, который должен быть ≥ 1, наш ответ соответствует, так что он правильный).
Решаем две системы
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)