1) cos(x/3) > √3/2 Если нарисовать тригонометрический круг и отметить точки, где cos a = √3/2, то есть a1 = pi/6 + 2pi*k; a2 = -pi/6 + 2pi*k, то станет понятно, что решение неравенства: x/3 ∈ (-pi/6 + 2pi*k; pi/6 + 2pi*k) x ∈ (-pi/2 + 6pi*k; pi/2 + 6pi*k) Это решение приведено на рисунке 1.
2) 3ctg(pi/6 + x/2) > -√3 ctg(pi/6 + x/2) > -√3/3 Здесь лучше показать решение на графике котангенса, рис. 2. ctg a = -√3/3; a = 2pi/3 + pi*k; ctg a не определен (условно равен +oo) при a = pi*k pi/6 + x/2 ∈(pi*k; 2pi/3 + pi*k) x/2 ∈ (-pi/6 + pi*k; 2pi/3 - pi/6 + pi*k) = (-pi/6 + pi*k; pi/2 + pi*k) x ∈ (-pi/3 + 2pi*k; pi + 2pi*k)
Если нарисовать тригонометрический круг и отметить точки, где
cos a = √3/2, то есть a1 = pi/6 + 2pi*k; a2 = -pi/6 + 2pi*k,
то станет понятно, что решение неравенства:
x/3 ∈ (-pi/6 + 2pi*k; pi/6 + 2pi*k)
x ∈ (-pi/2 + 6pi*k; pi/2 + 6pi*k)
Это решение приведено на рисунке 1.
2) 3ctg(pi/6 + x/2) > -√3
ctg(pi/6 + x/2) > -√3/3
Здесь лучше показать решение на графике котангенса, рис. 2.
ctg a = -√3/3; a = 2pi/3 + pi*k;
ctg a не определен (условно равен +oo) при a = pi*k
pi/6 + x/2 ∈(pi*k; 2pi/3 + pi*k)
x/2 ∈ (-pi/6 + pi*k; 2pi/3 - pi/6 + pi*k) = (-pi/6 + pi*k; pi/2 + pi*k)
x ∈ (-pi/3 + 2pi*k; pi + 2pi*k)
(x³ + 1)/(x + 1) + 3/(x² - x + 1) ≤ 4
одз x≠-1
да и сократим первyю дробь
(x² - x + 1) + 3/(x² - x + 1) ≤ 4
(x² - x + 1) всегда положителен D<0 и коэффициент при х^2 больше 0
приводим к общему знаменателю и отбрасываем его(он всегда положителен)
(x² - x + 1)² - 4(x² - x + 1) + 3 ≤ 0
D = 16 - 12 = 4
(x² - x + 1)₁₂ = (4 +- 2)/2 = 1 3
(x² - x + 1 - 1)(x² - x + 1 - 3) ≤ 0
(x² - x)(x² - x - 2) ≤ 0
вторая скобка D=1+8 = 9 x12=(1+-3)/2 = 2 -1 x² - x - 2 = (x - 2)(x + 1)
x(x-1)(x-2)(x+1) ≤ 0
применяем метод интервалов
[-1] [0] [1] [2]
x ∈ [-1,0] U [1,2]
вспоминаем одз х≠-1
ответ x ∈ (-1,0] U [1,2]