наим. -4750
наиб. 34
Объяснение:
f(x) = x⁵+15x³-50x
x ∈ [-5 ; 0]
экстремумы (мин или макс) в точках f'(x) = 0
f'(x) = 5x⁴ + 45x³ - 50
5x⁴ + 45x³ - 50 = 0
x⁴ + 9x² - 10 =0
x² = y ≥ 0
y² + 9y -10 =0
D = 121
y = (-9 +11)/2 = 1, второй корень отрицательный - не подходит
x² = 1
x = -1, т. к. 1 ∉ [-5 ; 0]
f(-1) = -1 -15 + 50 = 34
узнать мин или макс можно или через 2-ю производную или сравнить со значениями в окрестности.
Сравним:
f(0) = 0 < 34
f(-2) = -32 - 120 + 100 = -52 < 34
Значит наибольшее на отрезке = 34 и это единственный экстремум на промежутке, значит наименьшее будет на его краях, при 0 уже нашли найдем при -5
(-5)⁵ + 15*(-5)³ + 250 = -3125 - 1875 + 250 = -4750 это и будет наименьшим значением
наим. -4750
наиб. 34
Объяснение:
f(x) = x⁵+15x³-50x
x ∈ [-5 ; 0]
экстремумы (мин или макс) в точках f'(x) = 0
f'(x) = 5x⁴ + 45x³ - 50
5x⁴ + 45x³ - 50 = 0
x⁴ + 9x² - 10 =0
x² = y ≥ 0
y² + 9y -10 =0
D = 121
y = (-9 +11)/2 = 1, второй корень отрицательный - не подходит
x² = 1
x = -1, т. к. 1 ∉ [-5 ; 0]
f(-1) = -1 -15 + 50 = 34
узнать мин или макс можно или через 2-ю производную или сравнить со значениями в окрестности.
Сравним:
f(0) = 0 < 34
f(-2) = -32 - 120 + 100 = -52 < 34
Значит наибольшее на отрезке = 34 и это единственный экстремум на промежутке, значит наименьшее будет на его краях, при 0 уже нашли найдем при -5
(-5)⁵ + 15*(-5)³ + 250 = -3125 - 1875 + 250 = -4750 это и будет наименьшим значением
S = b1/(1 - q)
У нас b1 = 8, q = 0,5, S = 8/(1 - 0,5) = 16
2) Арифметическая прогрессия
a(n) = a1 + d*(n - 1)
У нас a1 = 3, d = 4, n = 10, a(10) = 3 + 4*9 = 3 + 36 = 39
3) b1 = 9, q = -1/3, S = 9/(1 - 1/3) = 9/(2/3) = 9*3/2 = 13,5
4) Сумма арифметической прогрессии
S = (a1 + a(n))*n/2
a1 = 2, n = 102-2+1 = 101, a(101) = 102
S = (2 + 102)*101/2 = 52*101 = 5252
5) a1 = -3, d = -3, n = 25, a(25) = -3 - 3*24 = -3 - 72 = -75
6) a1 = 10, d = -2, n = 10, a(10) = 10 - 2*9 = 10 - 18 = -8
S(10) = (10 - 8)*10/2 = 2*10/2 = 10