В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
лол1338
лол1338
20.07.2022 10:24 •  Алгебра

(100 ) найдите промежутки возрастания и убывания функции :

f(x)= sinx

f(x)= cosx

f(x)= tgx

f(x)= sin2x+cos2x

решите хоть один, ! или хотя бы объясните, как заранее )

p.s. : там вроде нужно использовать производные

Показать ответ
Ответ:
Fhh72
Fhh72
27.08.2020 15:45

Объяснение:

попытаюсь объяснить. в целом алгоритм простой. легче всего, конечно, построить график и посмотреть где функция убывает, а где возрастает. Но если такой не подходит, то надо искать производную. В первом примере производная от синуса равна косинусу. Приравняем получившуюся производную к нулю (f'(x)=cosx=0). То есть х=π/2+πn, где n∈Z.  Именно при таких х производная равна 0, то есть функция f(x) меняет свою монотонность. Если производная меньше нуля, то функция убывает, если больше, то она возрастает. Для этого надо подставить какие нибудь значения справа и слева от точек x=π/2+πn. Получаем что слева функция возрастает, а справа убывает. То есть функция возрастает от -π/2+πn, до π/2+πn, а убывает от π/2+πn до 3π/2+πn, где n∈Z.

Аналогично решим и другие. (надеюсь что теорию вы поняли, поэтому не буду расписывать)

2) Производная от косинуса равна   минус синусу. Синус равен нулю в точках πn, где n∈Z. Так как при π/2 -sin(π/2) <0, то на промежутке от 0+πn до π+πn, где n ∈Z, функция убывает (так как точка π/2 лежит на таком промежутке при n=0 ), значит на интервале от -π+πn до 0+πn функция возрастает.

3) производная от тангенса равна 1/((cos x)^2).  То есть при любых х производная больше 0. Это значит что функция возрастает на всей области определения.

4) производная от данной функции равна f'(x)=2cos(2x)-2sin(2x). Производная равна нулю при x=π/8+2πn и x=5π/8+2πn, где n∈Z. Решив аналогично предыдущим примерам, получим, что функция убывает на интервале [π/8+2πn; 5π/8+2πn]  и возрастает на интервале [5π/8+2πn; 9π/8+2πn] где n∈Z.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота