В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Аля3338
Аля3338
16.03.2020 13:58 •  Алгебра

100
сколько натуральных делителей числа 2^5*3^3*5^2 сами имеют нечетное число натуральных делителей?

Показать ответ
Ответ:
Asja21
Asja21
05.08.2020 09:15

12

Объяснение:

Пусть А=2⁵·3³·5². Любое число вида В=2ᵃ·3ᵇ·5ⁿ, где a∈Z, b∈Z, n∈Z и 0≤a≤5, 0≤b≤3, 0≤n≤2, является делителем числа А. По условию делители числа А должны иметь нечетное число натуральных делителей. Известно, что число делителей числа вида В равно

τ(В)=(a+1)·(b+1)·(n+1)

и поэтому чтобы произведение было нечетным множители должны быть нечетными. Но это возможно когда a, b и n являются одновременно четными числами.

Значит мы должны рассмотреть делители числа А вида С=3ᵇ·5ⁿ·2ᵃ, такие что a, b и n являются одновременно четными числами. Относительно степеней b, n, a, соответственно, составим комбинации:

1. 000

2. 002

3. 020

4. 200

5. 022

6. 202

7. 220

8. 222

9. 004

10. 024

11. 204

12. 224

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота