заметим что любое положительное целое значение х не решение, так как [x]² - x*[x] = 0 и 3 > 0
Немного пугает квадрат первого члена и хочется решить квадратное уравнение, но это не так. Так как [x] и [x]² это целые числа, а не переменные и у нас линейная зависимоть
[x] <= x
x = [x] + {x} целая и дробная части
0 ≤ {x} < 1
теперь будем оценивать неравенство
[x]² - x*[x] + 3 ≤ 0
[x]² + 3 ≤ x*[x]
([x]² + 3)/[x] ≤ x
имеем право [x] = 0 когда 0≤ x < 1 тогда [x]² - x*[x] = 0 и 3 > 0 не корень
[x] + 3/[x] ≤ x
x - [x] ≥ 3/[x]
{x} ≥ 3/[x]
0 ≤ {x} < 1 значит 3/[x] < 1 [x} ≥ 4 но минимум [х] = 4 то есть 4 < x < 5
[x]² - x*[x] + 3 ≤ 0
наименьшее положительное решение найти
x > 0
заметим что любое положительное целое значение х не решение, так как [x]² - x*[x] = 0 и 3 > 0
Немного пугает квадрат первого члена и хочется решить квадратное уравнение, но это не так. Так как [x] и [x]² это целые числа, а не переменные и у нас линейная зависимоть
[x] <= x
x = [x] + {x} целая и дробная части
0 ≤ {x} < 1
теперь будем оценивать неравенство
[x]² - x*[x] + 3 ≤ 0
[x]² + 3 ≤ x*[x]
([x]² + 3)/[x] ≤ x
имеем право [x] = 0 когда 0≤ x < 1 тогда [x]² - x*[x] = 0 и 3 > 0 не корень
[x] + 3/[x] ≤ x
x - [x] ≥ 3/[x]
{x} ≥ 3/[x]
0 ≤ {x} < 1 значит 3/[x] < 1 [x} ≥ 4 но минимум [х] = 4 то есть 4 < x < 5
{x} ≥ 3/4
{x} = 3/4 минимум
x = [x] + {x} = 4 + 3/4 = 4 3/4 = 4.75
проверяем
[4.75]² - 4.75*[4,75] + 3 = 16 - 19 + 3 = 0 ≤ 0 да
для надежности проверим два ближайших числа 4,74 и 4.76
[4.74]² - 4.74*[4,74] + 3 = 16 - 18.96 + 3 = 0.04 > 0
[4.76]² - 4.76*[4,76] + 3 = 16 - 19.04 + 3 = -0.04 < 0
ответ 4.75
1.а) y=6*0.5+19=3+19=22
б) 1=6x+19
6x=18
x=3
в) 7=-2*6+19=1 - Не проходит.
2.а) Проведите прямую через точки 0 и точку А(3;2)
б) y=2*1.5-4=-1
3. y=-2x - Возьмите точку x (Например 2, тогда y=-4) и проведите горизонтальную прямую на координатной плоскости.
y=3 - проведите горизонтальную прямую, где значение y=3
4. 47x-37=-13x+23
60x=60
x=1
y=47-37=10
y=-13+23=10
Точка пересечения двух графиков функций = А(1;10)
5. y=3x-7
Пусть x=2 и x=3, тогда y=-1 и y=2
A(2;-1) B(3;2)
Тогда пусть параллельный график будет с точками O(0;0) и C(1;3)
Тогда y=3x - искомая формула линейной функции
Объяснение: