Теорія: Функція = при ≠π2+π,∈ℤ є непарною і періодичною з періодом π. Тому досить побудувати її графік на проміжку [0;π2) Оберемо для побудови контрольні точки, через які проведемо плавну криву на координатної площині. 0=0π6=3‾‾√3π4=1π3=3‾√
Потім, відобразивши її симетрично відносно початку координат, отримаємо графік на інтервалі (−π2;π2) Використовуючи періодичність, будуємо графік функції = на всій області визначення. Графік функції = називають тангенсоїдою. Головною гілкою графіка функції = називають гілку, яка знаходиться в інтервалі (−π2;π2) tgxgrafik.png Властивості функції = 1. Область визначення - множина всіх дійсних чисел ≠π2+π,∈ℤ
2. Множина значень - множина ℝ всіх дійсних чисел
3. Функція = періодична з періодом π
4. Функція = непарна
5. Функція = приймає: - значення 0, при =π,∈ℤ; - додатні значення на інтервалах (π;π2+π),∈ℤ; - від'ємні значення на інтервалах (−π2+π;π),∈ℤ.
6. Функція = зростає на інтервалах (−π2+π;π2+π),∈ℤ.
x-x0)^2+(y-y0)^2=r^2 - общий вид. Подаставляем координаты трех точек:
(1-x0)^2+(2-y0)^2=r^2
x0^2+(1+y0)^2=r^2 (***)
(3+x0)^2+y0^2=r^2
приравняем левые части второго и третьего уравнений:
x0^2+(1+y0)^2=(3+x0)^2+y0^2
xo^2+1+2y0+y0^2=9+6x0+x0^2+y0^2
y0-3x0=4 (*)
теперь приравниваем первое и второе:
(1-х0)^2+(2-y0)^2=x0^2=(1+y0)^2
1-2x0+x0^2+4-4y0+y0^2=x0^2+1+2y0+y0^2
x0=2-3y0 (**)
из уравнений (*) и (**) составляем систему и решаем ее:
у0-6+9у0=4
у0=1
х0= -1
находим радиус, подставив в (***):
(-1)^2+(1+1)^2=r^2; r^2=5. Тогда уравнение окружности:
(х+1)^2+(у-1)^2=5
Функція = при ≠π2+π,∈ℤ є непарною і періодичною з періодом π.
Тому досить побудувати її графік на проміжку [0;π2)
Оберемо для побудови контрольні точки, через які проведемо плавну криву на координатної площині.
0=0π6=3‾‾√3π4=1π3=3‾√
Потім, відобразивши її симетрично відносно початку координат, отримаємо графік на інтервалі (−π2;π2)
Використовуючи періодичність, будуємо графік функції = на всій області визначення.
Графік функції = називають тангенсоїдою.
Головною гілкою графіка функції = називають гілку, яка знаходиться в інтервалі (−π2;π2)
tgxgrafik.png
Властивості функції =
1. Область визначення - множина всіх дійсних чисел ≠π2+π,∈ℤ
2. Множина значень - множина ℝ всіх дійсних чисел
3. Функція = періодична з періодом π
4. Функція = непарна
5. Функція = приймає:
- значення 0, при =π,∈ℤ;
- додатні значення на інтервалах (π;π2+π),∈ℤ;
- від'ємні значення на інтервалах (−π2+π;π),∈ℤ.
6. Функція = зростає на інтервалах (−π2+π;π2+π),∈ℤ.