10Вспомните и напишите имя, кому принадлежит следующее описание: «Мальчик был пухлый, коротенький, с рыхлым белым телом, как сметана, крайне флегматического,
невозмутимого нрава, с шарообразною головою и круглым лицом, на котором
единственною заметною чертою были маленькие киргизские глазки, раскрывавшиеся
вполне, когда подавалось кушанье или говорилось о еде».
Преобразуемой первое и последнее слагаемое по формуле суммы синусов
2sin[(4x + 2x)/2]cos[4x - 2x]/2] + sin3x = 0
2sin3xcosx+ sin3x = 0
sin3x(2cosx + 1) = 0
sin3x = 0
3x = πn, n ∈ Z
x = πn/3, n ∈ Z
2cosx + 1 = 0
cosx = -1/2
x = ±2π/3 + 2πk, k ∈ Z
ответ: x = πn/3, n ∈ Z; ±2π/3 + 2πk, k ∈ Z.
2) 2sin²x + 3sinxcosx + cos²x = 0 |:cos²x
2tg²x + 3tgx + 1 = 0
2tg²x + 2tgx + tgx + 1 = 0
2tgx(tgx + 1) + (tgx + 1) = 0
(2tgx + 1)(tgx + 1) = 0
2tgx + 1 = 0
tgx = -1/2
x = arctg(-1/2) + πn, n ∈ Z.
tgx + 1 = 0
tgx = -1
x = -π/4 + πk, k ∈ Z.
ответ: arctg(-1/2) + πn, n ∈ Z; -π/4 + πk, k ∈ Z.
1. Выпадение 2 очков при 1 бросании = 6, при втором бросании, тоже = 6, значит равновозможных исходов 6*6=36
2. Для того, чтобы 2 очка были наименьшими из выпавших, при первом броске должно выпасть 2, при втором броске - любое количество очков, кроме 1. Или при первом броске - любое, кроме 1, а при втором броске - 2 очка.
3. Возможен вариант выпадения 2 очков и при 1 и при 2 броске, поэтому, при подсчете, вариант это учитывается 2 раза.
3. Выпадение 2 очков из всех, кроме 1 очка = 5, при первом, и 5 при втором броске:
количество благоприятных исходов: 5+5-1=9 ((-1) - выпадение 2 очков в каждом из двух бросаний)
4. Вероятность благоприятного исхода: 9/36=1/4=0.25
ответ: 0.25