Интегрирование — это одна из двух основных операций в математическом анализе. В отличие от операции дифференцирования, интеграл от элементарной функции может не быть элементарной функцией. Например, из теоремы Лиувилля следует, что интеграл от {\displaystyle e^{x^{2}}}e^{x^2} не является элементарной функцией. Таблицы известных первообразных оказываются часто очень полезны, хотя сейчас и теряют свою актуальность с появлением систем компьютерной алгебры. На этой странице представлен список наиболее часто встречающихся первообразных.
Вертикальные асимптоты: x = 2
Горизонтальные асимптоты: y = 3
Нет наклонных асимптот
Объяснение:
Выясним, при каких значениях переменной функция 3 x + 1 x − 2 не определена. x = 2
Рассмотрим рациональную функцию
, где n - степень числителя, а m - степень знаменателя.
1. Если n < m , то ось x, y = 0 , является горизонтальной асимптотой.
2. Если n = m , то горизонтальной асимптотой является прямая
Если n > m , то не существует горизонтальной асимптоты (только наклонная асимптота).
Найдем n и m
n = 1 ; m = 1
Поскольку n = m , горизонтальная асимптота является прямой , где a = 3 и b = 1
y = 3
Наклонных асимптот нет, поскольку степень числителя меньше либо равна степени знаменателя.
Это множество всех асимптот.
Вертикальные асимптоты: x = 2
Горизонтальные асимптоты: y = 3
Нет наклонных асимптот
Интегрирование — это одна из двух основных операций в математическом анализе. В отличие от операции дифференцирования, интеграл от элементарной функции может не быть элементарной функцией. Например, из теоремы Лиувилля следует, что интеграл от {\displaystyle e^{x^{2}}}e^{x^2} не является элементарной функцией. Таблицы известных первообразных оказываются часто очень полезны, хотя сейчас и теряют свою актуальность с появлением систем компьютерной алгебры. На этой странице представлен список наиболее часто встречающихся первообразных.
Объяснение: